SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bezgin G.) srt2:(2021)"

Search: WFRF:(Bezgin G.) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Therriault, J., et al. (author)
  • Determining Amyloid-β Positivity Using 18F-AZD4694 PET Imaging
  • 2021
  • In: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 1535-5667. ; 62:2, s. 247-252
  • Journal article (peer-reviewed)abstract
    • Amyloid-β deposition into plaques is a pathologic hallmark of Alzheimer disease appearing years before the onset of symptoms. Although cerebral amyloid-β deposition occurs on a continuum, dichotomization into positive and negative groups has advantages for diagnosis, clinical management, and population enrichment for clinical trials. 18F-AZD4694 (also known as 18F-NAV4694) is an amyloid-β imaging ligand with high affinity for amyloid-β plaques. Despite being used in multiple academic centers, no studies have assessed a quantitative cutoff for amyloid-β positivity using 18F-AZD4694 PET. Methods: We assessed 176 individuals [young adults (n = 22), cognitively unimpaired elderly (n = 89), and cognitively impaired (n = 65)] who underwent amyloid-β PET with 18F-AZD4694, lumbar puncture, structural MRI, and genotyping for APOEε418F-AZD4694 values were normalized using the cerebellar gray matter as a reference region. We compared 5 methods for deriving a quantitative threshold for 18F-AZD4694 PET positivity: comparison with young-control SUV ratios (SUVRs), receiver-operating-characteristic (ROC) curves based on clinical classification of cognitively unimpaired elderly versus Alzheimer disease dementia, ROC curves based on visual Aβ-positive/Aβ-negative classification, gaussian mixture modeling, and comparison with cerebrospinal fluid measures of amyloid-β, specifically the Aβ42/Aβ40 ratio. Results: We observed good convergence among the 4 methods: ROC curves based on visual classification (optimal cut point, 1.55 SUVR), ROC curves based on clinical classification (optimal cut point, 1.56 SUVR) gaussian mixture modeling (optimal cut point, 1.55 SUVR), and comparison with cerebrospinal fluid measures of amyloid-β (optimal cut point, 1.51 SUVR). Means and 2 SDs from young controls resulted in a lower threshold (1.33 SUVR) that did not agree with the other methods and labeled most elderly individuals as Aβ-positive. Conclusion: Good convergence was obtained among several methods for determining an optimal cutoff for 18F-AZD4694 PET positivity. Despite conceptual and analytic idiosyncrasies linked with dichotomization of continuous variables, an 18F-AZD4694 threshold of 1.55 SUVR had reliable discriminative accuracy. Although clinical use of amyloid PET is currently by visual inspection of scans, quantitative thresholds may be helpful to arbitrate disagreement among raters or in borderline cases. © 2021 by the Society of Nuclear Medicine and Molecular Imaging.
  •  
2.
  • Lussier, F. Z., et al. (author)
  • Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals
  • 2021
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:2
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer's disease. Most recently, plasma phosphorylated tau181 has shown excellent performance. The relationship between plasma phosphorylated tau181 and cerebral metabolic dysfunction assessed by [F-18]fluorodeoxyglucose PET in Alzheimer's disease is still unknown. This study was performed on 892 older individuals (297 cognitively unimpaired; 595 cognitively impaired) from the Alzheimer's Disease Neuroimaging Initiative cohort. Plasma phosphorylated tau181 was assessed using single molecular array technology and metabolic dysfunction was indexed by [F-18]fluorodeoxyglucose PET. Cross-sectional associations between plasma and CSF phosphorylated tau181 and [F-18]fluorodeoxyglucose were assessed using voxelwise linear regression models, with individuals stratified by diagnostic group and by beta-amyoid status. Associations between baseline plasma phosphorylated tau181 and longitudinal (24months) rate of brain metabolic decline were also assessed in 389 individuals with available data using correlations and voxelwise regression models. Plasma phosphorylated tau181 was elevated in beta-amyloid positive and cognitively impaired individuals as well as in apolipoprotein E epsilon 4 carriers and was significantly associated with age, worse cognitive performance and CSF phosphorylated tau181. Cross-sectional analyses showed strong associations between plasma phosphorylated tau181 and fluorodewcyglucose PET in cognitively impaired and beta-amyloid positive individuals. Voxelwise longitudinal analyses showed that baseline plasma phosphorylated taul 81 concentrations were significantly associated with annual rates of metabolic decline in cognitively impaired individuals, bilaterally in the medial and lateral temporal lobes. The associations between plasma phosphorylated tau181 and reduced brain metabolism, primarily in cognitively impaired and in beta-amyloid positive individuals, supports the use of plasma phosphorylated tau181 as a simple, low-cost, minimally invasive and accessible tool to both assess current and predict future metabolic dysfunction associated with Alzheimer's disease, comparatively to PET, MRI and CSF methods.
  •  
3.
  • Therriault, J., et al. (author)
  • Association of plasma P-tau181 with memory decline in non-demented adults
  • 2021
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease is the leading cause of dementia worldwide and is characterized by a long preclinical phase in which amyloid-beta and tau accumulate in the absence of cognitive decline. In vivo biomarkers for Alzheimer's disease are expensive, invasive and inaccessible, yet are critical for accurate disease diagnosis and patient management. Recent ultrasensitive methods to measure plasma phosphorylated tau 181 (p-tau181) display strong correlations with tau positron emission tomography, p-tau181 in CSF, and tau pathology at autopsy. The clinical utility of plasma-based p-tau181 biomarkers is unclear. In a longitudinal multicentre observational study, we assessed 1113 non-demented individuals (509 cognitively unimpaired elderly and 604 individuals with mild cognitive impairment) from the Alzheimer's Disease Neuroimaging Initiative who underwent neuropsychological assessments and were evaluated for plasma p-tau181. The primary outcome was a memory composite z-score. Mixed-effect models assessed rates of memory decline in relation to baseline plasma p-tau181, and whether plasma p-tau181 significantly predicted memory decline beyond widely available clinical and genetic data (age, sex, years of education, cardiovascular and metabolic conditions, and APOE epsilon 4 status). Participants were followed for a median of 4.1 years. Baseline plasma p-tau181 was associated with lower baseline memory (beta estimate: -0.49, standard error: 0.06, t-value: -7.97), as well as faster rates of memory decline (beta estimate: -0.11, standard error: 0.01, t-value: -7.37). Moreover, the inclusion of plasma p-tau181 resulted in improved prediction of memory decline beyond clinical and genetic data (marginal R-2 of 16.7-23%, chi(2) = 100.81, P<0.00001). Elevated baseline plasma p-tau181 was associated with higher rates of clinical progression to mild cognitive impairment (hazard ratio = 1.82, 95% confidence interval: 1.2-2.8) and from mild cognitive impairment to dementia (hazard ratio = 2.06, 95% confidence interval: 1.55-2.74). Our results suggest that in elderly individuals without dementia at baseline, plasma p-tau181 biomarkers were associated with greater memory decline and rates of clinical progression to dementia. Plasma p-tau181 improved prediction of memory decline above a model with currently available clinical and genetic data. While the clinical importance of this improvement in the prediction of memory decline is unknown, these results highlight the potential of plasma p-tau181 as a cost-effective and scalable Alzheimer's disease biomarker.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view