SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bornefalk Hans) srt2:(2010-2014)"

Sökning: WFRF:(Bornefalk Hans) > (2010-2014)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bornefalk, Hans, et al. (författare)
  • Design considerations to overcome cross talk in a photon counting silicon strip detector for computed tomography
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 621:1-3, s. 371-378
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents a Monte Carlo simulation of the detector energy response in the presence of pileup in a segmented silicon microstrip detector designed for high flux spectral computed tomography with sub-millimeter pixel size. Currents induced on the collection electrode of a pixel segment are explicitly modeled and signals emanating from events in neighboring pixels are superimposed together with electronic noise before the entire pulse train is processed by a model of the readout electronics to obtain the detector energy response function. The article shows how the lower threshold and the time constant of the electronic filters need to be set in order to minimize the detrimental influence of cross talk from neighboring pixel segments, an issue that is aggravated by the sub-millimeter pixel size and the proposed segmented detector design. (C) 2010 Elsevier B.V. All rights reserved.
  •  
2.
  • Bornefalk, Hans, et al. (författare)
  • Effect of Temperature Variation on the Energy Response of a Photon Counting Silicon CT Detector
  • 2013
  • Ingår i: IEEE Transactions on Nuclear Science. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9499 .- 1558-1578. ; 60:2, s. 1442-1449
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of temperature variation on pulse height determination accuracy is determined for a photon counting multibin silicon detector developed for spectral CT. Theoretical predictions of the temperature coefficient of the gain and offset are similar to values derived from synchrotron radiation measurements in a temperature controlled environment. By means of statistical modeling, we conclude that temperature changes affect all channels equally and with separate effects on gain and threshold offset. The combined effect of a 1 degrees C temperature increase is to decrease the detected energy by 0.1 keV for events depositing 30 keV. For the electronic noise, no statistically significant temperature effect was discernible in the data set, although theory predicts a weak dependence. The method is applicable to all x-ray detectors operating in pulse mode.
  •  
3.
  • Bornefalk, Hans, et al. (författare)
  • Image quality in photon counting-mode detector systems
  • 2013
  • Patent (populärvet., debatt m.m.)abstract
    • The current invention applies to photon counting silicon x-ray detectors with energy discriminating capabilities and applications in x-ray imaging systems. The overall image quality produced by such a system is improved by the presented novel methods for optimally using the energy information in Compton events and making selective use of counts induced from charges collected in neighboring pixels. The pile-up problem during high-flux imaging regimes is reduced by a novel method for signal reset, which improves the count efficiency by reducing the risk of losing event due to signal pile-up in the read out electronics chain.
  •  
4.
  • Bornefalk, Hans, et al. (författare)
  • Necessary forward model specification accuracy for basis material decomposition in spectral CT
  • 2014
  • Ingår i: Medical Imaging 2014. - : SPIE - International Society for Optical Engineering. - 9780819498267 ; , s. 90332I-
  • Konferensbidrag (refereegranskat)abstract
    • Material basis decomposition in the sinogram domain requires accurate knowledge of the forward model in spectral CT. Misspecifications over a certain limit will result in biased estimates and make quantum limited quantitative CT difficult. We present a method whereby users can determine the degree of allowed misspecification error in a spectral CT forward model, and still have quantification errors that are quantum limited.
  •  
5.
  • Bornefalk, Hans, et al. (författare)
  • Photon-counting spectral computed tomography using silicon strip detectors : a feasibility study
  • 2010
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 55:7, s. 1999-2022
  • Tidskriftsartikel (refereegranskat)abstract
    • We show how the spectral imaging framework should be modified to account for a high fraction of Compton interactions in low Z detector materials such as silicon. Using this framework, where deposited energies differ from actual photon energies, we compare the performance of a silicon strip detector, including the influence of scatter inside the detector and charge sharing but disregarding signal pileup, with an ideal energy integrating detector. We show that although the detection efficiency for silicon rapidly drops for the acceleration voltages encountered in clinical computed tomography practice, silicon detectors could perform on a par with ideal energy integrating detectors for routine imaging tasks. The use of spectrally sensitive detectors opens up the possibility for decomposition techniques such as k-edge imaging, and we show that the proposed modification of the spectral imaging framework is beneficial for such imaging tasks.
  •  
6.
  • Bornefalk, Hans, et al. (författare)
  • Simulation study of an energy sensitive photon counting silicon strip detector for computed tomography : identifying strengths and weaknesses and developing work-arounds
  • 2010
  • Ingår i: MEDICAL IMAGING 2010. - : SPIE. - 9780819480231
  • Konferensbidrag (refereegranskat)abstract
    • We model the effect of signal pile-up on the energy resolution of a photon counting silicon detector designed for high flux spectral CT with sub-millimeter pixel size. Various design parameters, such as bias voltage, lower threshold level for discarding of electronic noise and the entire electronic read out chain are modeled and realistic parameter settings are determined. We explicitly model the currents induced on the collection electrodes of a pixel and superimpose signals emanating from events in neighboring pixels, either due to charge sharing or signals induced during charge collection. Electronic noise is added to the pulse train before feeding it through a model of the read out electronics where the pulse height spectrum is saved to yield the detector energy response function. The main result of this study is that a lower threshold of 5 keV and a rather long time constant of the shaping filter (tau(0) = 30 ns) are needed to discard induced pulses from events in neighboring pixels. These induction currents occur even if no charge is being deposited in the analyzed pixel from the event in the neighboring pixel. There is also only a limited gain in energy resolution by increasing the bias voltage to 1000 V from 600 V. We show that with these settings the resulting energy resolution, as measured by the FWHM/E of the photo peak, is 5% at 70 keV.
  •  
7.
  • Bornefalk, Hans (författare)
  • Synthetic Hounsfield units from spectral CT data
  • 2012
  • Ingår i: Physics in Medicine and Biology. - 0031-9155 .- 1361-6560. ; 57:7, s. N83-N87
  • Tidskriftsartikel (refereegranskat)abstract
    • Beam-hardening-free synthetic images with absolute CT numbers that radiologists are used to can be constructed from spectral CT data by forming 'dichromatic' images after basis decomposition. The CT numbers are accurate for all tissues and the method does not require additional reconstruction. This method prevents radiologists from having to relearn new rules-of-thumb regarding absolute CT numbers for various organs and conditions as conventional CT is replaced by spectral CT. Displaying the synthetic Hounsfield unit images side-by-side with images reconstructed for optimal detectability for a certain task can ease the transition from conventional to spectral CT.
  •  
8.
  • Bornefalk, Hans, 1974- (författare)
  • Task-based weights for photon counting spectral x-ray imaging
  • 2011
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 38:11, s. 6065-6073
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To develop a framework for taking the spatial frequency composition of an imaging taskinto account when determining optimal bin weight factors for photon counting energy sensitivex-ray systems. A second purpose of the investigation is to evaluate the possible improvement comparedto using pixel based weights.Methods: The Fourier based approach of imaging performance and detectability index d0 is appliedto pulse height discriminating photon counting systems. The dependency of d0 on the bin weightfactors is made explicit, taking into account both differences in signal and noise transfer characteristicsacross bins and the spatial frequency dependency of interbin correlations from reabsorbedscatter. Using a simplified model of a specific silicon detector, d0 values for a high and a low frequencyimaging task are determined for optimal weights and compared to pixel based weights.Results: The method successfully identifies bins where a large point spread function degradesdetection of high spatial frequency targets. The method is also successful in determining how todownweigh highly correlated bins. Quantitative predictions for the simplified silicon detectormodel indicate that improvements in the detectability index when applying task-based weightsinstead of pixel based weights are small for high frequency targets, but could be in excess of 10%for low frequency tasks where scatter-induced correlation otherwise degrade detectability.Conclusions: The proposed method makes the spatial frequency dependency of complex correlationstructures between bins and their effect on the system detective quantum efficiency easier toanalyze and allows optimizing bin weights for given imaging tasks. A potential increase in detectabilityof double digit percents in silicon detector systems operated at typical CT energies (100kVp) merits further evaluation on a real system. The method is noted to be of higher relevancefor silicon detectors than for cadmium (zink) telluride detectors.
  •  
9.
  • Bornefalk, Hans, et al. (författare)
  • Theoretical Comparison of the Iodine Quantification Accuracy of Two Spectral CT Technologies
  • 2014
  • Ingår i: IEEE Transactions on Medical Imaging. - 0278-0062 .- 1558-254X. ; 33:2, s. 556-565
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the theoretical limits of iodine quantification for the photon counting multibin and dual energy technologies. Dual energy systems by necessity have to make prior assumptions in order to quantify iodine. We explicitly allow the multibin system to make the same assumptions and also allow them to be wrong. We isolate the effect of technology from imperfections and implementation issues by assuming both technologies to be ideal, i.e., without scattered radiation, unity detection efficiency and perfect energy response functions, and by applying the Cramer-Rao lower bound methodology to assess the quantification accuracy. When priors are wrong the maximum likelihood estimates will be biased and the mean square error of the quantification error is a more appropriate figure of merit. The evaluation assumes identical X-ray spectra for both methodologies and for that reason a sensitivity analysis is performed with regard to the assumed X-ray spectrum. We show that when iodine is quantified over regions of interest larger than 6 cm, multibin systems benefit by independent estimation of three basis functions. For smaller regions of interest multibin systems can increase quantification accuracy by making the same prior assumptions as dual energy systems.
  •  
10.
  • Bornefalk, Hans (författare)
  • XCOM intrinsic dimensionality for low-Z elements at diagnostic energies
  • 2012
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 39:2, s. 654-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine the intrinsic dimensionality of linear attenuation coefficients (LACs) from XCOM for elements with low atomic number (Z = 1-20) at diagnostic x-ray energies (25-120 keV). H-0(q), the hypothesis that the space of LACs is spanned by q bases, is tested for various q-values. Methods: Principal component analysis is first applied and the LACs are projected onto the first q principal component bases. The residuals of the model values vs XCOM data are determined for all energies and atomic numbers. Heteroscedasticity invalidates the prerequisite of i.i.d. errors necessary for bootstrapping residuals. Instead wild bootstrap is applied, which, by not mixing residuals, allows the effect of the non-i.i.d residuals to be reflected in the result. Credible regions for the eigenvalues of the correlation matrix for the bootstrapped LAC data are determined. If subsequent credible regions for the eigenvalues overlap, the corresponding principal component is not considered to represent true data structure but noise. If this happens for eigenvalues l and l + 1, for any l <= q, H-0(q) is rejected. Results: The largest value of q for which H-0(q) is nonrejectable at the 5%-level is q = 4. This indicates that the statistically significant intrinsic dimensionality of low-Z XCOM data at diagnostic energies is four. Conclusions: The method presented allows determination of the statistically significant dimensionality of any noisy linear subspace. Knowledge of such significant dimensionality is of interest for any method making assumptions on intrinsic dimensionality and evaluating results on noisy reference data. For LACs, knowledge of the low-Z dimensionality might be relevant when parametrization schemes are tuned to XCOM data. For x-ray imaging techniques based on the basis decomposition method (Alvarez and Macovski, Phys. Med. Biol. 21, 733-744, 1976), an underlying dimensionality of two is commonly assigned to the LAC of human tissue at diagnostic energies. The finding of a higher statistically significant dimensionality thus raises the question whether a higher assumed model dimensionality (now feasible with the advent of multibin x-ray systems) might also be practically relevant, i.e., if better tissue characterization results can be obtained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy