SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chevet E) srt2:(2015-2019)"

Sökning: WFRF:(Chevet E) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Maurel, M., et al. (författare)
  • Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation
  • 2019
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
  •  
3.
  • Almanza, A., et al. (författare)
  • Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications
  • 2019
  • Ingår i: Febs Journal. - : Wiley. - 1742-464X. ; 286:2, s. 241-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
  •  
4.
  • Fessart, D., et al. (författare)
  • Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties
  • 2016
  • Ingår i: Elife. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis.
  •  
5.
  • Mahameed, M., et al. (författare)
  • The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors
  • 2019
  • Ingår i: Cell Death and Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • IRE1, PERK, and ATF6 are the three transducers of the mammalian canonical unfolded protein response (UPR). GSK2606414 is a potent inhibitor of PERK, while KIRA6 inhibits the kinase activity of IRE1. Both molecules are frequently used to probe the biological roles of the UPR in mammalian cells. In a direct binding assay, GSK2606414 bound to the cytoplasmic domain of KIT with dissociation constants (K d ) value of 664 ± 294 nM whereas KIRA6 showed a K d value of 10.8 ± 2.9 µM. In silico docking studies confirmed a compact interaction of GSK2606414 and KIRA6 with KIT ATP binding pocket. In cultured cells, GSK2606414 inhibited KIT tyrosine kinase activity at nanomolar concentrations and in a PERK-independent manner. Moreover, in contrast to other KIT inhibitors, GSK2606414 enhanced KIT endocytosis and its lysosomal degradation. Although KIRA6 also inhibited KIT at nanomolar concentrations, it did not prompt KIT degradation, and rescued KIT from GSK2606414-mediated degradation. Consistent with KIT inhibition, nanomolar concentrations of GSK2606414 and KIRA6 were sufficient to induce cell death in a KIT signaling-dependent mast cell leukemia cell line. Our data show for the first time that KIT is a shared target for two seemingly unrelated UPR inhibitors at concentrations that overlap with PERK and IRE1 inhibition. Furthermore, these data underscore discrepancies between in vitro binding measurements of kinase inhibitors and inhibition of the tyrosine kinase receptors in living cells. © 2019, The Author(s).
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy