SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Christensen Torben R.) srt2:(2020-2023)"

Search: WFRF:(Christensen Torben R.) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
2.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
3.
  • Oehri, Jacqueline, et al. (author)
  • Vegetation type is an important predictor of the arctic summer land surface energy budget
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
  •  
4.
  • Thomassen, Mads, et al. (author)
  • Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants : Application of a points-based ACMG/AMP approach
  • 2022
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 43:12, s. 1921-1944
  • Journal article (peer-reviewed)abstract
    • Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
  •  
5.
  • Zona, Donatella, et al. (author)
  • Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
  •  
6.
  • López-Blanco, Efrén, et al. (author)
  • Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics
  • 2020
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Journal article (peer-reviewed)abstract
    • Arctic tundra is a globally important store for carbon (C). However, there is a lack of reference sites characterising C exchange dynamics across annual cycles. Based on the Greenland Ecosystem Monitoring (GEM) programme, here we present 9-11 years of flux and ecosystem data across the period 2008-2018 from two wetland sites in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). The Zackenberg fen was a strong C sink despite its higher latitude and shorter growing seasons compared to the Kobbefjord fen. On average the ecosystem in Zackenberg took up ∼-50 g C m-2 yr-1 (range of +21 to-90 g C m-2 yr-1), more than twice that of Kobbefjord (mean ∼-18 g C m-2 yr-1, and range of +41 to-41 g C m-2 yr-1). The larger net carbon sequestration in Zackenberg fen was associated with higher leaf nitrogen (71%), leaf area index (140%), and plant quality (i.e. C:N ratio; 36%). Additional evidence from in-situ measurements includes 3 times higher levels of dissolved organic carbon in soils and 5 times more available plant nutrients, including dissolved organic nitrogen (N) and nitrates, in Zackenberg. Simulations using the soil-plant-atmosphere ecosystem model showed that Zackenberg's stronger CO2 sink could be related to measured differences in plant nutrients, and their effects on photosynthesis and respiration. The model explained 69% of the variability of net ecosystem exchange of CO2, 80% for photosynthesis and 71% for respiration over 11 years at Zackenberg, similar to previous results at Kobbefjord (73%, 73%, and 50%, respectively, over 8 years). We conclude that growing season limitations of plant phenology on net C uptake have been more than counterbalanced by the increased leaf nutrient content at the Zackenberg site.
  •  
7.
  • Pascual, Didac, et al. (author)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • In: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Research review (peer-reviewed)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
8.
  • Scheel, Maria, et al. (author)
  • Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators
  • 2023
  • In: FEMS Microbiology Ecology. - 0168-6496 .- 1574-6941. ; 99:11
  • Journal article (peer-reviewed)abstract
    • Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism. Using total RNA from an up to 26 500-year-old abruptly eroding permafrost site in Greenland, we described increased microbial activity and its controls, including thaw and microbiome predator abundance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (7)
research review (1)
Type of content
peer-reviewed (8)
Author/Editor
Christensen, Torben ... (5)
Salomaa, Veikko (2)
Lind, Lars (2)
Sattar, Naveed (2)
Deloukas, Panos (2)
Franks, Paul W. (2)
show more...
Wareham, Nicholas J. (2)
Laakso, Markku (2)
McCarthy, Mark I (2)
Bork-Jensen, Jette (2)
Brandslund, Ivan (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Langenberg, Claudia (2)
Boehnke, Michael (2)
Mohlke, Karen L (2)
Buring, Julie E. (2)
Zhao, Wei (2)
Rasheed, Asif (2)
Saleheen, Danish (2)
Havulinna, Aki S. (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Verweij, Niek (2)
Rotter, Jerome I. (2)
Samani, Nilesh J. (2)
Jarvelin, Marjo-Riit ... (2)
Sun, Yan V. (2)
Mahajan, Anubha (2)
Luan, Jian'an (2)
Caulfield, Mark J. (2)
Munroe, Patricia B. (2)
Palmer, Colin N. A. (2)
Kee, Frank (2)
Karpe, Fredrik (2)
Kooperberg, Charles (2)
Sachs, Torsten (2)
Jousilahti, Pekka (2)
Zhao, Jing Hua (2)
Fornage, Myriam (2)
Launer, Lenore J (2)
Loos, Ruth J F (2)
Morrison, Alanna C (2)
Psaty, Bruce M (2)
Hayward, Caroline (2)
show less...
University
Lund University (7)
Umeå University (3)
Uppsala University (3)
University of Gothenburg (1)
Luleå University of Technology (1)
Stockholm University (1)
show more...
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (8)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view