SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Connolly N.) srt2:(2010-2014)"

Sökning: WFRF:(Connolly N.) > (2010-2014)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramowski, A., et al. (författare)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151-
  • Tidskriftsartikel (refereegranskat)abstract
    • The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.
  •  
2.
  • Barbary, K., et al. (författare)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 32-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine an SN Ia rate of 0.50(-0.19)(+0.23) (stat) (+0.10)(-0.09) (sys) h(70)(2) SNuB (SNuB equivalent to 10(-12) SNe (L-1)circle dot(,B) yr(-1)). In units of stellar mass, this translates to 0.36(-0.13)(+0.16) (stat) (+0.07)(-0.06) (sys) h(70)(2) SNuM (SNuM = 10(-12) SNe M-1 circle dot yr(-1)). This represents a factor of approximate to 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Psi(t) t(s). Under the approximation of a single-burst cluster formation redshift of z(f) = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41(-0.40)(+0.47), consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
  •  
3.
  • Barbary, K., et al. (författare)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z similar or equal to 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z greater than or similar to 1 and strengthening the case for an SN Ia rate that is greater than or similar to 0.6 x 10(-4) h(70)(3) yr(-1) Mpc(-3) at z similar to 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.
  •  
4.
  • Suzuki, N., et al. (författare)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK- ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density,rho(DE)(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat. CDM universe, we find Omega(A) = 0.729 +/- 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013(-0.073)(+0.068) (68% CL). Curvature is constrained to similar to 0.7% in the owCDM model and to similar to 2% in a model in which dark energy is allowed to vary with parameters w(0) and w(a). Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozenz > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.
  •  
5.
  • Aliu, E., et al. (författare)
  • Discovery of High-energy and Very High Energy γ-Ray Emission from the Blazar RBS 0413
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) γ-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based γ-ray observatory, detected VHE γ rays from RBS 0413 with a statistical significance of 5.5 standard deviations (σ) and a γ-ray flux of (1.5 ± 0.6stat ± 0.7syst) × 10–8 photons m–2 s–1 (~1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 ± 0.68stat ± 0.30syst. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE γ rays from RBS 0413 with a statistical significance of more than 9σ, a power-law photon index of 1.57 ± 0.12stat +0.11 – 0.12sys, and a γ-ray flux between 300 MeV and 300 GeV of (1.64 ± 0.43stat +0.31 – 0.22sys) × 10–5photons m–2 s–1. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the γ-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.
  •  
6.
  • Archambault, S., et al. (författare)
  • Deep Broadband Observations of the Distant Gamma-Ray Blazar PKS 1424+240
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 785:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z ≥ 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 ± 0.3) × 10–7 photons m–2 s–1 above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 ± 0.08) × 10–7 photons m–2 s–1 above 120 GeV. The measured differential very high energy (VHE; E ≥ 100 GeV) spectral indices are Γ = 3.8 ± 0.3, 4.3 ± 0.6 and 4.5 ± 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
  •  
7.
  • Acciari, V. A., et al. (författare)
  • VERITAS Observations of Gamma-Ray Bursts Detected by Swift
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 743:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
  •  
8.
  • Acciari, V. A., et al. (författare)
  • VERITAS Observations of the TeV Binary LS I +61\deg 303 During 2008-2010
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 738:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of observations of the TeV binary LS I +61° 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6σ) post-trials significance. In total, between 2008 October and 2010 December a total exposure of 64.5 hr was accumulated with VERITAS on LS I +61° 303, resulting in an excess at the 3.3σ significance level for constant emission over the entire integrated data set. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e., close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at 10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61° 303 by theSwift X-ray Telescope and the Rossi X-ray Timing Explorer Proportional Counter Array. We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope.
  •  
9.
  • Aliu, E., et al. (författare)
  • Discovery of TeV Gamma-Ray Emission from CTA 1 by VERITAS
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 764:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 030 (024) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N 0(E/3 TeV)–Γ, with a differential spectral index of Γ = 2.2 ± 0.2stat ± 0.3sys, and normalization N 0 = (9.1 ± 1.3stat ± 1.7sys) × 10–14 cm–2 s–1 TeV–1. The integral flux, F γ = 4.0 ×10–12 erg cm–2 s–1 above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.
  •  
10.
  • Aliu, E., et al. (författare)
  • Discovery of TeV Gamma-Ray Emission toward Supernova Remnant SNR G78.2+2.1
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 770:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of  and its spectrum is well-characterized by a differential power law (dN/dE = N 0 × (E/TeV)–Γ) with a photon index of Γ = 2.37 ± 0.14stat ± 0.20sys and a flux normalization of N 0 = 1.5 ± 0.2stat ± 0.4sys × 10–12 photon TeV–1 cm–2 s–1. This yields an integral flux of 5.2 ± 0.8stat ± 1.4sys × 10–12 photon cm–2 s–1above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy