SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dong Shuo) srt2:(2023)"

Sökning: WFRF:(Dong Shuo) > (2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
2.
  • Dastanpour Hosseinabadi, Esmat, et al. (författare)
  • Investigation of the metastable spinodally decomposed magnetic CrFe-rich phase in Al doped CrFeCoNi alloy
  • 2023
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 939
  • Tidskriftsartikel (refereegranskat)abstract
    • We have conducted an in-depth study of the magnetic phase due to a spinodal decomposition of the BCC phase of a CrFe-rich composition. This magnetic phase is present after casting (arc melting) or water quenching after annealing at 1250 degrees C for 24 h but is entirely absent after annealing in the interval 900-1100 degrees C for 24 h. Its formation is favored in the temperature interval ca 450-550 degrees C and loses magnetization above 640 degrees C. This ferromagnetic-paramagnetic transition is due to a structural transformation from ferromagnetic BCC into paramagnetic sigma and FCC phases. The conclusion from measurements at different heating rates is that both the transformation leading to the increase of the magnetization due to the spinodal decomposition of the parent phase and the vanishing magnetization at 640 degrees C are diffusion controlled. (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
  •  
3.
  • Dong, Shuo, et al. (författare)
  • Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.
  •  
4.
  • Jorstad, S.G., et al. (författare)
  • The Event Horizon Telescope Image of the Quasar NRAO 530
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 943:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5-7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of similar to 20 mu as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of similar to 5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 mu as along a position angle similar to -28 degrees. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.
  •  
5.
  • Pincelli, Tommaso, et al. (författare)
  • Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic–Excitonic Nanostructure
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light–matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon–exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron–phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling.
  •  
6.
  • Roelofs, F., et al. (författare)
  • Polarimetric Geometric Modeling for mm-VLBI Observations of Black Holes
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.
  •  
7.
  • Wang, Shuo, et al. (författare)
  • Assessing the CO2 capture potential for waste-fired CHP plants
  • 2023
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration of CO2 capture with biomass-fired power plants has attracted much attention due to its ability to achieve negative emissions. Waste-fired combined heat and power (CHP) plants with CO2 capture, on the other hand, has received little attention, and their potential remains unclear. This study aims to identify the possible range of the amount of captured CO2 and investigate the impact of CO2 capture on the performance of waste-fired CHP plants. Since heat is the primary product of CHP plants, it is important to maintain heat production unchanged when CO2 capture is integrated. Based on this prerequisite, two operating strategies (OS) were investigated, which correspond to the upper and lower boundaries of CO2 capture: OS1 was to maximize the amount of captured CO2 while keeping the heat supplied to the district heating (DH) network unchanged; and OS2 was to maximize CO2 capture while keeping both supplied heat and generated electricity unchanged. To obtain more accurate results regarding the CO2 capture, a dynamic model developed in Aspen Hysys™ was utilized to simulate monoethanolamine (MEA) based chemical absorption for CO2 capture. By using real dynamic data from a waste-fired CHP plant, dynamic simulation results showed that the highest amount of captured CO2, which was achieved in OS1, was 401 kton/year, corresponding to a CO2 capture ratio of 82%; while the lowest amount of captured CO2, which was achieved in OS2, was 99 kton/year, corresponding to a CO2 capture ratio of 20%. For OS1, the electricity generation was substantially decreased by 61%. When determining the negative emission, the emission resulted from the share of fossil fuel in the waste needs to be excluded. For the studied CHP plant, the fossil share was around 45%. As a result, only OS1 can achieve the negative emission, which was 181 kton/year; while OS2 still led to positive emissions. Compared to the plant without CO2 capture, the carbon intensity of heat was reduced from 0.405 ton/MWh to 0.091 ton/MWh in OS1 and 0.351 ton/MWh in OS2, while the carbon intensity of electricity was reduced from 0.409 ton/MWh to 0.072 ton/MWh in OS1 and 0.343 ton/MWh in OS2.
  •  
8.
  • Xian, R. Patrick, et al. (författare)
  • A machine learning route between band mapping and band structure
  • 2023
  • Ingår i: Nature Computational Science. - : Springer Nature. - 2662-8457. ; 3:1, s. 101-114
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy