SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dumas Randy K.) srt2:(2015)"

Sökning: WFRF:(Dumas Randy K.) > (2015)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balinsky, Michael, et al. (författare)
  • Spin Pumping and the Inverse Spin-Hall Effect via Magnetostatic Surface Spin-Wave Modes in Yttrium-Iron Garnet/Platinum Bilayers
  • 2015
  • Ingår i: IEEE Magnetics Letters. - 1949-307X .- 1949-3088. ; 6:3000604
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin pumping at a boundary between a yttrium-iron garnet (YIG) film and a thin platinum (Pt) layer is studied under conditions in which a magnetostatic surface spin wave (MSSW, or Damon-Eshbach mode) is excited in YIG by a narrow strip-line antenna. It is shown that the voltage created by the inverse spin-Hall effect (ISHE) in Pt is strongly dependent on the wavevector of the excited MSSW. For YIG film thicknesses of 41 and 0.9 mu m, the maximum ISHE voltage corresponds to the maximum of efficiently excited MSSW wavevectors and does not coincide with the maximum of absorbed microwave power. For a thinner (0.175 mu m) YIG film, the maximum of the ISHE voltage moves closer to the ferromagnetic resonance and almost coincides with the region of the maximum microwave absorption. We show that the effect is related to the change in the thickness profile and the wavenumber spectrum of the excited MSSW taking place when the YIG film thickness is increased.
  •  
2.
  • Balinsky, Michael, et al. (författare)
  • Spin Pumping and the Inverse Spin-Hall Effect via Magnetostatic Surface Spin-Wave Modes in Yttrium-Iron Garnet/Platinum Bilayers
  • 2015
  • Ingår i: Ieee Magnetics Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 1949-307X .- 1949-3088. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin pumping at a boundary between a yttrium-iron garnet (YIG) film and a thin platinum (Pt) layer is studied under conditions in which a magnetostatic surface spin wave (MSSW, or Damon-Eshbach mode) is excited in YIG by a narrow strip-line antenna. It is shown that the voltage created by the inverse spin-Hall effect (ISHE) in Pt is strongly dependent on the wavevector of the excited MSSW. For YIG film thicknesses of 41 and 0.9 mu m, the maximum ISHE voltage corresponds to the maximum of efficiently excited MSSW wavevectors and does not coincide with the maximum of absorbed microwave power. For a thinner (0.175 mu m) YIG film, the maximum of the ISHE voltage moves closer to the ferromagnetic resonance and almost coincides with the region of the maximum microwave absorption. We show that the effect is related to the change in the thickness profile and the wavenumber spectrum of the excited MSSW taking place when the YIG film thickness is increased.
  •  
3.
  • Chung, Sunjae, et al. (författare)
  • Magnetic droplet solitons in orthogonal spin valves
  • 2015
  • Ingår i: Fizika Nizkih Temperatur. - : American Institute of Physics (AIP). - 0132-6414 .- 1816-0328. ; 41:10, s. 833-837
  • Tidskriftsartikel (refereegranskat)abstract
    • We review the recent experimental advancements in the realization and understanding of magnetic droplet solitons generated by spin transfer torque in orthogonal nanocontact based spin torque nanooscillators (STNOs) fabricated on extended spin valves and spin valve nanowires. The magnetic droplets are detected and studied using the STNO microwave signal and its resistance, the latter both quasistatically and time-resolved. The droplet nucleation current is found to have a minimum at intermediate magnetic field strengths and the nature of the nucleation changes gradually from a single sharp step well above this field, mode-hopping around the minimum, and continuous at low fields. The mode-hopping and continuous transitions are ascribed to droplet drift instability and re-nucleation at different time scales, which is corroborated by time-resolved measurements. We argue that the use of tilted anisotropy fixed layers could reduce the nucleation current further, move the nucleation current minimum to lower fields, and potentially remove the need for an applied magnetic field altogether. Finally, evidence of an edge mode droplet in a nanowire is presented.
  •  
4.
  • Dürrenfeld, Philipp, et al. (författare)
  • Tunable damping, saturation magnetization, and exchange stiffness of half-Heusler NiMnSb thin films
  • 2015
  • Ingår i: Physical Review B. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 92:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The half-metallic half-Heusler alloy NiMnSb is a promising candidate for applications in spintronic devices due to its low magnetic damping and its rich anisotropies. Here we use ferromagnetic resonance (FMR) measurements and calculations from first principles to investigate how the composition of the epitaxially grown NiMnSb influences the magnetodynamic properties of saturation magnetization M-S, Gilbert damping alpha, and exchange stiffness A. M-S and A are shown to have a maximum for stoichiometric composition, while the Gilbert damping is minimum. We find excellent quantitative agreement between theory and experiment for M-S and alpha. The calculated A shows the same trend as the experimental data but has a larger magnitude. In addition to the unique in-plane anisotropy of the material, these tunabilities of the magnetodynamic properties can be taken advantage of when employing NiMnSb films in magnonic devices.
  •  
5.
  • Haidar, Mohammad, et al. (författare)
  • Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films
  • 2015
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 117:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization by impurities or defects at the surfaces.
  •  
6.
  • Hanson, Maj, 1939, et al. (författare)
  • Arrays of elliptical Fe(001) nanoparticles: Magnetization reversal, dipolar interactions, and effects of finite array sizes
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 2469-9950 .- 2469-9969 .- 1550-235X. ; 92:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic properties of arrays of nanoparticles are determined by the interplay between the individual particle properties and the dipolar interactions between them. Here we present a study of arrays of elliptical Fe(001) particles of thickness 10–50 nm. The aspect ratios of the ellipses are 1:3, their short axes a=50, 100, or 150 nm, and the periodicity of the rectangular arrays is either two or four times the corresponding axes of the ellipses. Magnetic measurements together with numerical and micromagnetic calculations yield a consistent picture of the arrays, comprising single-domain nanoparticles. We show that the magnetization reversal, occurring in the range 100–400 mT for fields applied along the long axis, is mainly determined by the properties of the corresponding single Fe ellipses. The interaction fields of the order of tens of mT can be tuned by the array configurations. For the actual arrays the interactions promote switching. For film thicknesses below the Bloch wall width parameter of Fe, lw=22 nm, magnetization reversal occurs without formation of domain walls or vortices. Within this range arrays may be tuned to obtain a well-defined switching field. Two general conclusions are drawn from the calculations: the character of the interaction, whether it promotes or delays magnetization reversal, is determined by the aspect ratio of the array grid, and the interaction strength saturates as the size of the array increases.
  •  
7.
  • Iacocca, Ezio, 1986, et al. (författare)
  • Mode-coupling mechanisms in nanocontact spin-torque oscillators
  • 2015
  • Ingår i: Physical Review B. - 1098-0121 .- 1550-235X. ; 91:10, s. artikel 104405 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-torque oscillators (STOs) are devices that allow for the excitation of a variety of magnetodynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs), where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. By means of electrical characterization and a multimode STO theory, we investigate the physical origin of the mode-couplingmechanisms favoring coexistence. Two couplingmechanisms are identified: (i) magnon-mediated scattering and (ii) intermode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross section. The generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode-coupling mechanisms.
  •  
8.
  • Madami, M., et al. (författare)
  • Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 2469-9950 .- 2469-9969 .- 1550-235X. ; 92:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocontact spin-torque oscillators are devices in which the generation of propagating spin waves can be sustained by spin transfer torque. In the present paper, we perform combined electrical and optical measurements in a single experimental setup to systematically investigate the excitation of spin waves by a nanocontact spin-torque oscillator and their propagation in a Ni80Fe20 extended layer. By using microfocused Brillouin light scattering we observe an anisotropic emission of spin waves, due to the broken symmetry imposed by the inhomogeneous Oersted field generated by the injected current. In particular, spin waves propagate on the side of the nanocontact where the Oersted field and the in-plane component of the applied magnetic field are antiparallel, while propagation is inhibited on the opposite side. Moreover, propagating spin waves are efficiently excited only in a limited frequency range corresponding to wavevectors inversely proportional to the size of the nanocontact. This frequency range obeys the dispersion relation for exchange-dominated spin waves in the far field, as confirmed by micromagnetic simulations of similar devices. The present results have direct consequences for spin wave based applications, such as synchronization, computation, and magnonics.
  •  
9.
  • Morrison, C., et al. (författare)
  • Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
  • 2015
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 117:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
  •  
10.
  • Sharma, R., et al. (författare)
  • Modulation Rate Study in a Spin-Torque Oscillator-Based Wireless Communication System
  • 2015
  • Ingår i: Ieee Transactions on Magnetics. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9464 .- 1941-0069. ; 51:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We study a wireless communication system based on a magnetic tunnel junction spin-torque nano-oscillator (STNO) by employing amplitude-shift-keying modulation. By varying the pulse modulation frequency (f(m)) from 1 kHz to 2 MHz and distance (D) between the antenna from 25 to 150 cm, we show a maximum data rate of 6 Mb/s (at D = 25 cm and fm = 1 MHz), a limit imposed by our setup and noise generated by the STNO itself. We also report the average amplitude noise (S-delta a) and average white frequency noise (S-wh) of the wireless communication system and discuss their dependence on the distance between the antennas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy