SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enerbäck Sven 1958) srt2:(2020-2023)"

Sökning: WFRF:(Enerbäck Sven 1958) > (2020-2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allu, P. K. R., et al. (författare)
  • FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation
  • 2023
  • Ingår i: Molecular Metabolism. - 2212-8778. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level.Methods: Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis.Results: Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle.Conclusion: These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.(c) 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
2.
  • Beg, Muheeb, et al. (författare)
  • ATGL activity regulates GLUT1-mediated glucose uptake and lactate production via TXNIP stability in adipocytes
  • 2021
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 296
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, lipolysis has been regarded as an enzymatic activity that liberates fatty acids as metabolic fuel. However, recent work has shown that novel substrates, including a variety of lipid compounds such as fatty acids and their derivatives, release lipolysis products that act as signaling molecules and transcriptional modulators. While these studies have expanded the role of lipolysis, the mechanisms underpinning lipolysis signaling are not fully defined. Here, we uncover a new mechanism regulating glucose uptake, whereby activation of lipolysis, in response to elevated cAMP, leads to the stimulation of thioredoxin-interacting protein (TXNIP) degradation. This, in turn, selectively induces glucose transporter 1 surface localization and glucose uptake in 3T3-L1 adipocytes and increases lactate production. Interestingly, cAMP-induced glucose uptake via degradation of TXNIP is largely dependent upon adipose triglyceride lipase (ATGL) and not hormone-sensitive lipase or monoacylglycerol lipase. Pharmacological inhibition or knockdown of ATGL alone prevents cAMP-dependent TXNIP degradation and thus significantly decreases glucose uptake and lactate secretion. Conversely, overexpression of ATGL amplifies the cAMP response, yielding increased glucose uptake and lactate production. Similarly, knockdown of TXNIP elicits enhanced basal glucose uptake and lactate secretion, and increased cAMP further amplifies this phenotype. Overexpression of TXNIP reduces basal and cAMP-stimulated glucose uptake and lactate secretion. As a proof of concept, we replicated these findings in human primary adipocytes and observed TXNIP degradation and increased glucose uptake and lactate secretion upon elevated cAMP signaling. Taken together, our results suggest a crosstalk between ATGL-mediated lipolysis and glucose uptake.
  •  
3.
  • Eskilsson, Anna, et al. (författare)
  • The generation of immune-induced fever and emotional stress-induced hyperthermia in mice does not involve brown adipose tissue thermogenesis
  • 2020
  • Ingår i: FASEB Journal. - : WILEY. - 0892-6638 .- 1530-6860. ; 34:4, s. 5863-5876
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a beta (3) agonist, UCP-1 and PGC-1 alpha were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the beta (3) agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A beta (3) antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An alpha (1)/alpha (2b) antagonist or a 5HT(1A) agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.
  •  
4.
  • Ma, Haixia, et al. (författare)
  • The transcription factor Foxp1 regulates aerobic glycolysis in adipocytes and myocytes
  • 2023
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 299:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate pro-duction despite normal oxygen levels and functional mito-chondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is in-dependent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immu-noprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.
  •  
5.
  • Pham, T. T., et al. (författare)
  • Human Bone Marrow Adipose Tissue is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot
  • 2020
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:7, s. 2300-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Bone marrow (BM) in adult long bones is rich in adipose tissue, but the functions of BM adipocytes are largely unknown. We set out to elucidate the metabolic and molecular characteristics of BM adipose tissue (BMAT) in humans. OBJECTIVE: Our aim was to determine if BMAT is an insulin-sensitive tissue, and whether the insulin sensitivity is altered in obesity or type 2 diabetes (T2DM). DESIGN: This was a cross-sectional and longitudinal study. SETTING: The study was conducted in a clinical research center. PATIENTS OR OTHER PARTICIPANTS: Bone marrow adipose tissue glucose uptake (GU) was assessed in 23 morbidly obese subjects (9 with T2DM) and 9 healthy controls with normal body weight. In addition, GU was assessed in another 11 controls during cold exposure. Bone marrow adipose tissue samples for molecular analyses were collected from non-DM patients undergoing knee arthroplasty. INTERVENTION(S): Obese subjects were assessed before and 6 months after bariatric surgery and controls at 1 time point. MAIN OUTCOME MEASURE: We used positron emission tomography imaging with 2-[18F]fluoro-2-deoxy-D-glucose tracer to characterize GU in femoral and vertebral BMAT. Bone marrow adipose tissue molecular profile was assessed using quantitative RT-PCR. RESULTS: Insulin enhances GU in human BMAT. Femoral BMAT insulin sensitivity was impaired in obese patients with T2DM compared to controls, but it improved after bariatric surgery. Furthermore, gene expression analysis revealed that BMAT was distinct from brown and white adipose tissue. CONCLUSIONS: Bone marrow adipose tissue is a metabolically active, insulin-sensitive and molecularly distinct fat depot that may play a role in whole body energy metabolism. © Endocrine Society 2020.
  •  
6.
  • Rabinowitz, J. D., et al. (författare)
  • Lactate: the ugly duckling of energy metabolism
  • 2020
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:7, s. 566-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactate, perhaps the best-known metabolic waste product, was first isolated from sour milk, in which it is produced by lactobacilli. Whereas microbes also generate other fermentation products, such as ethanol or acetone, lactate dominates in mammals. Lactate production increases when the demand for ATP and oxygen exceeds supply, as occurs during intense exercise and ischaemia. The build-up of lactate in stressed muscle and ischaemic tissues has established lactate's reputation as a deleterious waste product. In this Perspective, we summarize emerging evidence that, in mammals, lactate also serves as a major circulating carbohydrate fuel. By providing mammalian cells with both a convenient source and sink for three-carbon compounds, circulating lactate enables the uncoupling of carbohydrate-driven mitochondrial energy generation from glycolysis. Lactate and pyruvate together serve as a circulating redox buffer that equilibrates the NADH/NAD ratio across cells and tissues. This reconceptualization of lactate as a fuel-analogous to how Hans Christian Andersen's ugly duckling is actually a beautiful swan-has the potential to reshape the field of energy metabolism.
  •  
7.
  • Ravussin, Eric, et al. (författare)
  • Leslie Paul Kozak, PhD (1940-2023)
  • 2023
  • Ingår i: Obesity. - 1930-7381 .- 1930-739X. ; 31:12, s. 2885-2886
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy