SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feng Chungang) srt2:(2020)"

Sökning: WFRF:(Feng Chungang) > (2020)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Danqin, et al. (författare)
  • Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.
  •  
2.
  • Rafati, Nima, et al. (författare)
  • Reconstruction of the birth of a male sex chromosome present in Atlantic herring
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy Of Sciences. - 0027-8424 .- 1091-6490. ; 117:39, s. 24359-24368
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
  •  
3.
  • Sato, Daiki X., et al. (författare)
  • Brain Transcriptomics of Wild and Domestic Rabbits Suggests That Changes in Dopamine Signaling and Ciliary Function Contributed to Evolution of Tameness
  • 2020
  • Ingår i: Genome Biology and Evolution. - : OXFORD UNIV PRESS. - 1759-6653. ; 12:10, s. 1918-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development. This suggests that a large proportion of the genetic changes targeted by selection during domestication might affect gene regulation. Here, we generated RNA-sequencing data for four brain regions (amygdala, hypothalamus, hippocampus, and parietal/temporal cortex) sampled at birth and revealed hundreds of differentially expressed genes (DEGs) between wild and domestic rabbits. DEGs in amygdala were significantly enriched for genes associated with dopaminergic function and all 12 DEGs in this category showed higher expression in domestic rabbits. DEGs in hippocampus were enriched for genes associated with ciliary function, all 21 genes in this category showed lower expression in domestic rabbits. These results indicate an important role of dopamine signaling and ciliary function in the evolution of tameness during rabbit domestication. Our study shows that gene expression in specific pathways has been profoundly altered during domestication, but that the majority of genes showing differential expression in this study have not been the direct targets of selection.
  •  
4.
  • Wang, Yuzhe, et al. (författare)
  • Multiple ancestral haplotypes harboring regulatory mutations cumulatively contribute to a QTL affecting chicken growth traits
  • 2020
  • Ingår i: Communications Biology. - : NATURE PUBLISHING GROUP. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In depth studies of quantitative trait loci (QTL) can provide insights to the genetic architectures of complex traits. A major effect QTL at the distal end of chicken chromosome 1 has been associated with growth traits in multiple populations. This locus was fine-mapped in a fifteen-generation chicken advanced intercross population including 1119 birds and explored in further detail using 222 sequenced genomes from 10 high/low body weight chicken stocks. We detected this QTL that, in total, contributed 14.4% of the genetic variance for growth. Further, nine mosaic precise intervals (Kb level) which contain ancestral regulatory variants were fine-mapped and we chose one of them to demonstrate the key regulatory role in the duodenum. This is the first study to break down the detail genetic architectures for the well-known QTL in chicken and provides a good example of the fine-mapping of various of quantitative traits in any species. Yuzhe Wang, Xuemin Cao et al. report the fine-mapping of a major growth trait QTL in chicken using genome-wide association and haplotype association analyses. They discover multiple mutations cumulatively contribute to the previously-reported QTL and identify one of a regulatory mutation that contributes to the variation in the measured traits.
  •  
5.
  • Xiong, Shaobing, et al. (författare)
  • Defect-Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells
  • 2020
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells are a highly competitive candidate for next-generation photovoltaic technology. Defects in the perovskite grain boundaries and on the film surfaces however have significant impacts on both the device efficiency and environmental stability. Herein, a strategy using organic dyes as additives to passivate the defect states and produce more n-type perovskite films, thereby improving charge transport and decreasing charge recombination, is reported. Based on this strategy, the power conversion efficiency of the perovskite solar cell is significantly increased from 18.13% to 20.18% with a negligible hysteresis. Furthermore, the rich hydrogen bonds and carbonyl structures in the organic dye can significantly enhance device stability both in terms of humidity and thermal stress. The results present a promising pathway using abundant and colorful organic dyes as additives to achieve high-performance perovskite solar cells.
  •  
6.
  • Yang, Jianming, et al. (författare)
  • Energetics and Energy Loss in 2D Ruddlesden-Popper Perovskite Solar Cells
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:23
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D Ruddlesden-Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)(2)(MA)(n)-1PbnI3n+1/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and infinity are systematically investigated. It is found that n-n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p-n junctions in the pure 2D and 3D scenarios (n = 1 and infinity). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open-circuit voltage (V-oc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the V-oc to evidently increase by 94 mV. Capacitance-voltage measurements with Mott-Schottky analysis demonstrate that such V-oc improvement is attributed to the enhanced potential at the interface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy