SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henshaw Jonathan D.) srt2:(2020)"

Sökning: WFRF:(Henshaw Jonathan D.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
2.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • SiO emission as a probe of cloud-cloud collisions in infrared dark clouds
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:2, s. 1666-1681
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared dark clouds (IRDCs) are very dense and highly extincted regions that host the initial conditions of star and stellar cluster formation. It is crucial to study the kinematics and molecular content of IRDCs to test their formation mechanism and ultimately characterize these initial conditions. We have obtained high-sensitivity Silicon Monoxide, SiO(2-1), emission maps towards the six IRDCs, G018.82-00.28, G019.27+00.07, G028.53-00.25, G028.67+00.13, G038.95-00.47, and G053.11+00.05 (cloud A, B, D, E, I, and J, respectively), using the 30-m antenna at the Instituto de Radioastronomia Millimetrica (IRAM30m). We have investigated the SiO spatial distribution and kinematic structure across the six clouds to look for signatures of cloud-cloud collision events that may have formed the IRDCs and triggered star formation within them. Towards clouds A, B, D, I, and J, we detect spatially compact SiO emission with broad-line profiles that are spatially coincident with massive cores. Towards the IRDCs A and I, we report an additional SiO component that shows narrow-line profiles and that is widespread across quiescent regions. Finally, we do not detect any significant SiO emission towards cloud E. We suggest that the broad and compact SiO emission detected towards the clouds is likely associated with ongoing star formation activity within the IRDCs. However, the additional narrow and widespread SiO emission detected towards cloud A and I may have originated from the collision between the IRDCs and flows of molecular gas pushed towards the clouds by nearby H II regions.
  •  
3.
  • Riener, Manuel, et al. (författare)
  • Autonomous Gaussian decomposition of the Galactic Ring Survey: II. The Galactic distribution of 13CO
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the distribution of CO emission in the Milky Way is essential to understanding the impact of the Galactic environment on the formation and evolution of structures in the interstellar medium. However, our current insight as to the fraction of CO in the spiral arm and interarm regions is still limited by large uncertainties in assumed rotation curve models or distance determination techniques. In this work we use the Bayesian approach from Reid et al. (2016, ApJ, 823, 77; 2019, ApJ, 885, 131), which is based on our most precise knowledge at present about the structure and kinematics of the Milky Way, to obtain the current best assessment of the Galactic distribution of 13CO from the Galactic Ring Survey. We performed two different distance estimates that either included (Run A) or excluded (Run B) a model for Galactic features, such as spiral arms or spurs. We also included a prior for the solution of the kinematic distance ambiguity that was determined from a compilation of literature distances and an assumed size-linewidth relationship. Even though the two distance runs show strong differences due to the prior for Galactic features for Run A and larger uncertainties due to kinematic distances in Run B, the majority of their distance results are consistent with each other within the uncertainties. We find that the fraction of 13CO emission associated with spiral arm features ranges from 76 to 84% between the two distance runs. The vertical distribution of the gas is concentrated around the Galactic midplane, showing full-width at half-maximum values of ~75 pc. We do not find any significant difference between gas emission properties associated with spiral arm and interarm features. In particular, the distribution of velocity dispersion values of gas emission in spurs and spiral arms is very similar. We detect a trend of higher velocity dispersion values with increasing heliocentric distance, which we, however, attribute to beam averaging effects caused by differences in spatial resolution. We argue that the true distribution of the gas emission is likely more similar to a combination of the two distance results discussed, and we highlight the importance of using complementary distance estimations to safeguard against the pitfalls of any single approach. We conclude that the methodology presented in this work is a promising way to determine distances to gas emission features in Galactic plane surveys.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy