SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmgren Madelene) srt2:(2020)"

Sökning: WFRF:(Holmgren Madelene) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmgren, Madelene, et al. (författare)
  • Assessment of Cerebral Blood Flow Pulsatility and Cerebral Arterial Compliance With 4D Flow MRI
  • 2020
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 51:5, s. 1516-1525
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Four-dimensional flow magnetic resonance imaging (4D flow MRI) enables efficient investigation of cerebral blood flow pulsatility in the cerebral arteries. This is important for exploring hemodynamic mechanisms behind vascular diseases associated with arterial pulsations.PURPOSE: To investigate the feasibility of pulsatility assessments with 4D flow MRI, its agreement with reference two-dimensional phase-contrast MRI (2D PC-MRI) measurements, and to demonstrate how 4D flow MRI can be used to assess cerebral arterial compliance and cerebrovascular resistance in major cerebral arteries.STUDY TYPE: Prospective.SUBJECTS: Thirty-five subjects (20 women, 79 ± 5 years, range 70-91 years).FIELD STRENGTH/SEQUENCE: 4D flow MRI (PC-VIPR) and 2D PC-MRI acquired with a 3T scanner.ASSESSMENT: Time-resolved flow was assessed in nine cerebral arteries. From the pulsatile flow waveform in each artery, amplitude (ΔQ), volume load (ΔV), and pulsatility index (PI) were calculated. To reduce high-frequency noise in the 4D flow MRI data, the flow waveforms were low-pass filtered. From the total cerebral blood flow, total PI (PItot ), total volume load (ΔVtot ), cerebral arterial compliance (C), and cerebrovascular resistance (R) were calculated.STATISTICAL TESTS: Two-tailed paired t-test, intraclass correlation (ICC).RESULTS: There was no difference in ΔQ between 4D flow MRI and the reference (0.00 ± 0.022 ml/s, mean ± SEM, P = 0.97, ICC = 0.95, n = 310) with a cutoff frequency of 1.9 Hz and 15 cut plane long arterial segments. For ΔV, the difference was -0.006 ± 0.003 ml (mean ± SEM, P = 0.07, ICC = 0.93, n = 310) without filtering. Total R was 11.4 ± 2.41 mmHg/(ml/s) (mean ± SD) and C was 0.021 ± 0.009 ml/mmHg (mean ± SD). ΔVtot was 1.21 ± 0.29 ml (mean ± SD) with an ICC of 0.82 compared with the reference. PItot was 1.08 ± 0.21 (mean ± SD).DATA CONCLUSION: We successfully assessed 4D flow MRI cerebral arterial pulsatility, cerebral arterial compliance, and cerebrovascular resistance. Averaging of multiple cut planes and low-pass filtering was necessary to assess accurate peak-to-peak features in the flow rate waveforms.LEVEL OF EVIDENCE: 2Technical Efficacy Stage: 2
  •  
2.
  • Vikner, Tomas, et al. (författare)
  • Characterizing pulsatility in distal cerebral arteries using 4D flow MRI
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 40:12, s. 2429-2440
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports have suggested that age-related arterial stiffening and excessive cerebral arterial pulsatility cause blood-brain barrier breakdown, brain atrophy and cognitive decline. This has spurred interest in developing non-invasive methods to measure pulsatility in distal vessels, closer to the cerebral microcirculation. Here, we report a method based on four-dimensional (4D) flow MRI to estimate a global composite flow waveform of distal cerebral arteries. The method is based on finding and sampling arterial waveforms from thousands of cross sections in numerous small vessels of the brain, originating from cerebral cortical arteries. We demonstrate agreement with internal and external reference methods and show the ability to capture significant increases in distal cerebral arterial pulsatility as a function of age. The proposed approach can be used to advance our understanding regarding excessive arterial pulsatility as a potential trigger of cognitive decline and dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy