SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horváth István) srt2:(2015-2019)"

Sökning: WFRF:(Horváth István) > (2015-2019)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bálint, Mónika, et al. (författare)
  • Systematic exploration of multiple drug binding sites
  • 2017
  • Ingår i: Journal of Cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 9:65
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Targets with multiple (prerequisite or allosteric) binding sites have an increasing importance in drug design. Experimental determination of atomic resolution structures of ligands weakly bound to multiple binding sites is often challenging. Blind docking has been widely used for fast mapping of the entire target surface for multiple binding sites. Reliability of blind docking is limited by approximations of hydration models, simplified handling of molecular flexibility, and imperfect search algorithms.Results: To overcome such limitations, the present study introduces Wrap 'n' Shake (WnS), an atomic resolution method that systematically "wraps" the entire target into a monolayer of ligand molecules. Functional binding sites are extracted by a rapid molecular dynamics shaker. WnS is tested on biologically important systems such as mitogenactivated protein, tyrosine-protein kinases, key players of cellular signaling, and farnesyl pyrophosphate synthase, a target of antitumor agents.
  •  
2.
  • Baumann, Anne, et al. (författare)
  • Tyrosine Hydroxylase Binding to Phospholipid Membranes Prompts Its Amyloid Aggregation and Compromises Bilayer Integrity
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of catecholamine neurotransmitters and hormones, binds to negatively charged phospholipid membranes. Binding to both large and giant unilamellar vesicles causes membrane permeabilization, as observed by efflux and influx of fluorescence dyes. Whereas the initial protein-membrane interaction involves the N-terminal tail that constitutes an extension of the regulatory ACT-domain, prolonged membrane binding induces misfolding and self-oligomerization of TH over time as shown by circular dichroism and Thioflavin T fluorescence. The gradual amyloid-like aggregation likely occurs through cross-beta interactions involving aggregation-prone motives in the catalytic domains, consistent with the formation of chain and ring-like protofilaments observed by atomic force microscopy in monolayer-bound TH. PC12 cells treated with the neurotoxin 6-hydroxydopamine displayed increased TH levels in the mitochondrial fraction, while incubation of isolated mitochondria with TH led to a decrease in the mitochondrial membrane potential. Furthermore, cell-substrate impedance and viability assays showed that supplementing the culture media with TH compromises cell viability over time. Our results revealed that the disruptive effect of TH on cell membranes may be a cytotoxic and pathogenic factor if the regulation and intracellular stability of TH is compromised.
  •  
3.
  • Betancourt, Lazaro Hiram, et al. (författare)
  • The hidden story of heterogeneous B-raf V600E mutation quantitative protein expression in metastatic melanoma—association with clinical outcome and tumor phenotypes
  • 2019
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter-and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.
  •  
4.
  • Brasko, Csilla, et al. (författare)
  • Intelligent image-based in situ single-cell isolation
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying heterogeneities within cell populations is important for many fields including cancer research and neurobiology; however, techniques to isolate individual cells are limited. Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that is capable of capturing individually targeted cells using widely available techniques. Using high-resolution microscopy, laser microcapture microscopy, image analysis, and machine learning, our technology enables scalable molecular genetic analysis of single cells, targetable by morphology or location within the sample.
  •  
5.
  • Fiath, Richard, et al. (författare)
  • Large-scale recording of thalamocortical circuits : in vivo electrophysiology with the two-dimensional electronic depth control silicon probe
  • 2016
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 116:5, s. 2312-2330
  • Tidskriftsartikel (refereegranskat)abstract
    • Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single-and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.
  •  
6.
  • Gil, Jeovanis, et al. (författare)
  • Clinical protein science in translational medicine targeting malignant melanoma
  • 2019
  • Ingår i: Cell Biology and Toxicology. - : Springer Science and Business Media LLC. - 0742-2091 .- 1573-6822. ; 35:4, s. 293-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry–based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry–based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
  •  
7.
  • Horvath, Istvan, et al. (författare)
  • Co-aggregation of pro-inflammatory S100A9 with alpha-synuclein in Parkinson's disease : ex vivo and in vitro studies
  • 2018
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic neuroinflammation is a hallmark of Parkinson's disease (PD) pathophysiology, associated with increased levels of pro-inflammatory factors in PD brain tissues. The pro-inflammatory mediator and highly amyloidogenic protein S100A9 is involved in the amyloid-neuroinflammatory cascade in Alzheimer's disease. This is the first report on the co-aggregation of alpha-synuclein (alpha-syn) and S100A9 both in vitro and ex vivo in PD brain. Methods: Single and sequential immunohistochemistry, immunofluorescence, scanning electron and atomic force (AFM) microscopies were used to analyze the ex vivo PD brain tissues for S100A9 and alpha-syn location and aggregation. In vitro studies revealing S100A9 and alpha-syn interaction and co-aggregation were conducted by NMR, circular dichroism, Thioflavin-T fluorescence, AFM, and surface plasmon resonance methods. Results: Co-localized and co-aggregated S100A9 and alpha-syn were found in 20% Lewy bodies and 77% neuronal cells in the substantia nigra; both proteins were also observed in Lewy bodies in PD frontal lobe (Braak stages 4-6). Lewy bodies were characterized by ca. 10-23 mu m outer diameter, with S100A9 and alpha-syn being co-localized in the same lamellar structures. S100A9 was also detected in neurons and blood vessels of the aged patients without PD, but in much lesser extent. In vitro S100A9 and alpha-syn were shown to interact with each other via the alpha-syn C-terminus with an apparent dissociation constant of ca. 5 mu M. Their co-aggregation occurred significantly faster and led to formation of larger amyloid aggregates than the self-assembly of individual proteins. S100A9 amyloid oligomers were more toxic than those of alpha-syn, while co-aggregation of both proteins mitigated the cytotoxicity of S100A9 oligomers. Conclusions: We suggest that sustained neuroinflammation promoting the spread of amyloidogenic S100A9 in the brain tissues may trigger the amyloid cascade involving alpha-syn and S100A9 and leading to PD, similar to the effect of S100A9 and A beta co-aggregation in Alzheimer's disease. The finding of S100A9 involvement in PD may open a new avenue for therapeutic interventions targeting S100A9 and preventing its amyloid self-assembly in affected brain tissues.
  •  
8.
  • Horvath, Istvan, 1979, et al. (författare)
  • Copper chaperone blocks amyloid formation via ternary complex
  • 2018
  • Ingår i: Quarterly Reviews of Biophysics. - 1469-8994 .- 0033-5835. ; 51, s. e6-e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein misfolding in cells is avoided by a network of protein chaperones that detect misfolded or partially folded species. When proteins escape these control systems, misfolding may result in protein aggregation and amyloid formation. We here show that aggregation of the amyloidogenic protein alpha-synuclein (alpha S), the key player in Parkinson's disease, is controlled by the copper transport protein Atox1 in vitro. Copper ions are not freely available in the cellular environment, but when provided by Atox1, the resulting copper-dependent ternary complex blocks aS aggregation. Because the same inhibition was found for a truncated version of alpha S, lacking the C-terminal part, it appears that Atox1 interacts with the N-terminal copper site in alpha S. Metal-dependent chaperoning may be yet another manner in which cells control its proteome.
  •  
9.
  • Horvath, Istvan, 1979, et al. (författare)
  • Cross-talk between amyloidogenic proteins in type-2 diabetes and Parkinson's disease
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:44, s. 12473-12477
  • Tidskriftsartikel (refereegranskat)abstract
    • In type-2 diabetes (T2D) and Parkinson's disease (PD), polypeptide assembly into amyloid fibers plays central roles: in PD, alpha-synuclein (aS) forms amyloids and in T2D, amylin [islet amyloid polypeptide (IAPP)] forms amyloids. Using a combination of biophysical methods in vitro we have investigated whether aS, IAPP, and unprocessed IAPP, pro-IAPP, polypeptides can cross-react. Whereas IAPP forms amyloids within minutes, aS takes many hours to assemble into amyloids and pro-IAPP aggregates even slower under the same conditions. We discovered that preformed amyloids of proIAPP inhibit, whereas IAPP amyloids promote, aS amyloid formation. Amyloids of aS promote pro-IAPP amyloid formation, whereas they inhibit IAPP amyloid formation. In contrast, mixing of IAPP and aS monomers results in coaggregation that is faster than either protein alone; moreover, pro-IAPP can incorporate aS monomers into its amyloid fibers. From this intricate network of cross-reactivity, it is clear that the presence of IAPP can accelerate aS amyloid formation. This observation may explain why T2D patients are susceptible to developing PD.
  •  
10.
  • Horvath, Istvan, et al. (författare)
  • Immunochemical Detection of alpha-Synuclein Autoantibodies in Parkinson's Disease : Correlation between Plasma and Cerebrospinal Fluid Levels
  • 2017
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 8:6, s. 1170-1176
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoantibodies to Parkinson's disease (PD) amyloidogenic protein, a-synuclein, were recognized as a prospective biomarker for early disease diagnostics, yet there is inconsistency in previous reports, potentially related to PD status. Therefore, plasma and cerebrospinal fluid (CSF) of the cross-sectional cohort of 60 individuals, including recently diagnosed PD patients with mild and moderate PD and age-matched controls, were examined by enzyme-linked immunosorbent assay (ELISA). Nonparametric statistics was used for data analysis. We found significantly elevated levels of a-synuclein autoantibodies in both plasma and CSF in mild PD compared to controls, followed by some decrease in moderate PD. Receiver operating characteristic and effect size analyses confirmed the diagnostic power of a-synuclein antibodies in both plasma and CSF. For the first time, we showed the correlation between plasma and CSF a-synuclein antibody levels for mild, moderate, and combined PD groups. This indicates the potentiality of a-synuclein antibodies as PD biomarker and the increased diagnostic power of their simultaneous analysis in plasma and CSF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wittung-Stafshede, P ... (10)
Horvath, Istvan, 197 ... (10)
Horváth, István (9)
Rocha, Sandra, 1975 (4)
Kumar, Ranjeet, 1980 (4)
van Der Spoel, David (3)
visa fler...
Morozova-Roche, Ludm ... (3)
Balint, Monika (3)
Hetenyi, Csaba (3)
Jeszenői, Norbert (3)
Olsson, Håkan (2)
Goloborod'ko, V (2)
Baldetorp, Bo (2)
Kovacs, Gabor G. (2)
Marko-Varga, György (2)
Malm, Johan (2)
Forsgren, Lars (2)
Welinder, Charlotte (2)
Szasz, A. Marcell (2)
Appelqvist, Roger (2)
Sanchez, Aniel (2)
Tál, B. (2)
Morozova-Roche, Ludm ... (2)
Jönsson, Göran (2)
Rezeli, Melinda (2)
Ingvar, Christian (2)
Iashchishyn, Igor (2)
Eriksson, Jonatan (2)
Vestergaard, Bente (2)
Lundgren, Lotta (2)
Pawłowski, Krzysztof (2)
Pla, Indira (2)
Horváth, Zsolt (2)
Betancourt, Lazaro H ... (2)
Sugihara, Yutaka (2)
Wieslander, Elisabet (2)
Horvatovich, Peter (2)
Kuras, Magdalena (2)
Murillo, Jimmy Rodri ... (2)
Gil, Jeovanis (2)
Miliotis, Tasso (2)
Kwon, Ho Jeong (2)
Nemeth, Istvan Balaz ... (2)
Wolf-Watz, Magnus (2)
Moskalenko, Roman (2)
Kiskis, Juris, 1987 (2)
Fodera, Vito (2)
Wang, Chao, 1986- (2)
Werner, Tony, 1990 (2)
Weise, Christoph (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (11)
Umeå universitet (6)
Uppsala universitet (5)
Lunds universitet (4)
Kungliga Tekniska Högskolan (2)
Göteborgs universitet (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (16)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy