SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ingólfsson Ó.) srt2:(2015-2019)"

Sökning: WFRF:(Ingólfsson Ó.) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McCracken, R. G., et al. (författare)
  • Origin of the active drumlin field at Mulajokull, Iceland: New insights from till shear and consolidation patterns
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 148, s. 243-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratigraphic and morphologic data previously collected from the forefleld of Millajokull, Iceland, suggest that its recent surge cycles are responsible for the formation of drumlins there and that their relief reflects both deposition on drumlins and erosion between them. We have tested these ideas and aspects of leading models of drumlin formation by studying past patterns of bed deformation and effective stress in basal tills of the glacier's forefield. Patterns of till strain indicated by the anisotropy of magnetic susceptibility (AMS) of similar to 2300 intact till samples indicate that till was deposited during shear deformation, with shearing azimuths and planes that conform to the drumlin morphology. Thus, till deposition occurred as drumlins grew, in agreement with LiDAR data indicating that the degree of aggradation of the glacier forefleld is largest in areas subjected to the most surges. Previously described unconformities on the drumlin flanks, however, indicate that drumlin relief at Mulajokull has resulted, in part, from erosion. Given that the last surge deposited a till layer both on and between drumlins, a reasonable hypothesis is that erosion between drumlins occurred during normal (quiescent) flow of the glacier between surges. Densities of till samples, analyzed in conjunction with laboratory consolidation tests, indicate that effective stresses on the bed during such periods were on the order of 100 kPa larger between drumlins than within them, an observation consistent with subglacial channels at low water pressure occupying interdrumlin areas. Transport of sediment by turbulent flow in these channels or high effective stress adjacent to them causing enhanced till entrainment in ice or increased depths of bed deformation would promote the sediment flux divergence necessary to erode areas between drumlins. The observation that effective stresses were higher between drumlins than within them is the opposite of that presumed in leading models of drumlin formation. Moreover, the lack of AMS-fabric evidence of longitudinal compression in drumlin tills does not support some models of drumlin formation that invoke negative till-flux gradients in a deforming bed.
  •  
2.
  • Kirchner, Nina, et al. (författare)
  • GRANTSISM : An Excel™ ice sheet model for use in introductory Earth science courses
  • 2018
  • Ingår i: Journal of Geoscience education. - : Informa UK Limited. - 1089-9995 .- 2158-1428. ; 66:2, s. 109-120
  • Tidskriftsartikel (refereegranskat)abstract
    • GRANTISM (GReenland and ANTarctic Ice Sheet Model) is an educational ExcelTM model introduced by Pattyn (2006). Here, GRANTISM is amended to simulate the Svalbard-Barents-Sea Ice Sheet during the Last Glacial Maximum, an analogue for the contemporary West Antarctic Ice Sheet. A new name, “GRANTSISM,” is suggested; the added S represents Svalbard. GRANTSISM introduces students of bachelor’s or master’s programs in Earth sciences (first or second cycle program in the Bologna system for higher education), but with little or no background in numerical modeling, to basic ice sheet modeling. GRANTSISM provides hands-on learning experiences related to ice sheet dynamics in response to climate forcing, and fosters understanding of processes and feedbacks. GRANTSISM was successfully used in noncompulsory courses in which students have been able to reproduce paleo-ice sheet evolution scenarios discussed here as examples. Students progressed further by designing, developing, and analyzing their own modeling scenarios. Here, we describe GRANTSISM and report on how learning activities with GRANTSISM were assessed by students who had no prior experience in ice sheet modeling. The response rate for a noncompulsory survey of the learning activity was less than 40%. A subsequent control experiment with a compulsory survey, however, showed the same patterns of answers, so the student response is considered representative. First, GRANTSISM is concluded to be a highly attractive tool to introduce learners with an interest in ice sheet behavior to ice sheet modeling. Second, it triggers an interest for more in-depth learning experiences related to numerical ice sheet modeling.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy