SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johannesson Gudlaugur) srt2:(2021)"

Sökning: WFRF:(Johannesson Gudlaugur) > (2021)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldini, L., et al. (författare)
  • Catalog of Long-term Transient Sources in the First 10 yr of Fermi-LAT Data
  • 2021
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 256:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Fermi Large Area Telescope (LAT) catalog of long-term gamma-ray transient sources (1FLT). This comprises sources that were detected on monthly time intervals during the first decade of Fermi-LAT operations. The monthly timescale allows us to identify transient and variable sources that were not yet reported in other Fermi-LAT catalogs. The monthly data sets were analyzed using a wavelet-based source detection algorithm that provided the candidate new transient sources. The search was limited to the extragalactic regions of the sky to avoid the dominance of the Galactic diffuse emission at low Galactic latitudes. The transient candidates were then analyzed using the standard Fermi-LAT maximum likelihood analysis method. All sources detected with a statistical significance above 4 sigma in at least one monthly bin were listed in the final catalog. The 1FLT catalog contains 142 transient gamma-ray sources that are not included in the 4FGL-DR2 catalog. Many of these sources (102) have been confidently associated with active galactic nuclei (AGNs): 24 are associated with flat-spectrum radio quasars, 1 with a BL Lac object, 70 with blazars of uncertain type, 3 with radio galaxies, 1 with a compact steep-spectrum radio source, 1 with a steep-spectrum radio quasar, and 2 with AGNs of other types. The remaining 40 sources have no candidate counterparts at other wavelengths. The median gamma-ray spectral index of the 1FLT-AGN sources is softer than that reported in the latest Fermi-LAT AGN general catalog. This result is consistent with the hypothesis that detection of the softest gamma-ray emitters is less efficient when the data are integrated over year-long intervals.
  •  
2.
  • Ajello, M., et al. (författare)
  • Fermi Large Area Telescope Performance after 10 Years of Operation
  • 2021
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 256:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (LAT), the primary instrument for the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from 30 MeV to more than 300 GeV. We describe the performance of the instrument at the 10 yr milestone. LAT performance remains well within the specifications defined during the planning phase, validating the design choices and supporting the compelling case to extend the duration of the Fermi mission. The details provided here will be useful when designing the next generation of high-energy gamma-ray observatories.
  •  
3.
  • Ajello, M., et al. (författare)
  • First Fermi-LAT Solar Flare Catalog
  • 2021
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 252:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Fermi-Large Area Telescope (LAT) solar flare catalog covering the 24th solar cycle. This catalog contains 45 Fermi-LAT solar flares (FLSFs) with emission in the gamma-ray energy band (30 MeV-10 GeV) detected with a significance of >= 5 sigma over the years 2010-2018. A subsample containing 37 of these flares exhibits delayed emission beyond the prompt-impulsive hard X-ray phase, with 21 flares showing delayed emission lasting more than two hours. No prompt-impulsive emission is detected in four of these flares. We also present in this catalog observations of GeV emission from three flares originating from active regions located behind the limb of the visible solar disk. We report the lightcurves, spectra, best proton index, and localization (when possible) for all FLSFs. The gamma-ray spectra are consistent with the decay of pions produced by >300 MeV protons. This work contains the largest sample of high-energy gamma-ray flares ever reported and provides a unique opportunity to perform population studies on the different phases of the flare and thus allowing a new window in solar physics to be opened.
  •  
4.
  • Ajello, M., et al. (författare)
  • Gamma Rays from Fast Black-hole Winds
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 921:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive black holes at the centers of galaxies can launch powerful wide-angle winds that, if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersion of stars in galactic bulges. Propagating through the galaxy, the wind should interact with the interstellar medium creating a strong shock, similar to those observed in supernovae explosions, which is able to accelerate charged particles to high energies. In this work we use data from the Fermi Large Area Telescope to search for the gamma-ray emission from galaxies with an ultrafast outflow (UFO): a fast (v similar to 0.1 c), highly ionized outflow, detected in absorption at hard X-rays in several nearby active galactic nuclei (AGN). Adopting a sensitive stacking analysis we are able to detect the average gamma-ray emission from these galaxies and exclude that it is due to processes other than UFOs. Moreover, our analysis shows that the gamma-ray luminosity scales with the AGN bolometric luminosity and that these outflows transfer similar to 0.04% of their mechanical power to gamma-rays. Interpreting the observed gamma-ray emission as produced by cosmic rays (CRs) accelerated at the shock front, we find that the gamma-ray emission may attest to the onset of the wind-host interaction and that these outflows can energize charged particles up to the transition region between galactic and extragalactic CRs.
  •  
5.
  • Ajello, M., et al. (författare)
  • High-energy emission from a magnetar giant flare in the Sculptor galaxy
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:4, s. 385-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetars are the most highly magnetized neutron stars in the cosmos (with magnetic field 1013–1015 G). Giant flares from magnetars are rare, short-duration (about 0.1 s) bursts of hard X-rays and soft γ rays1,2. Owing to the limited sensitivity and energy coverage of previous telescopes, no magnetar giant flare has been detected at gigaelectronvolt (GeV) energies. Here, we report the discovery of GeV emission from a magnetar giant flare on 15 April 2020 (refs. 3,4 and A. J. Castro-Tirado et al., manuscript in preparation). The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected GeV γ rays from 19 s until 284 s after the initial detection of a signal in the megaelectronvolt (MeV) band. Our analysis shows that these γ rays are spatially associated with the nearby (3.5 megaparsecs) Sculptor galaxy and are unlikely to originate from a cosmological γ-ray burst. Thus, we infer that the γ rays originated with the magnetar giant flare in Sculptor. We suggest that the GeV signal is generated by an ultra-relativistic outflow that first radiates the prompt MeV-band photons, and then deposits its energy far from the stellar magnetosphere. After a propagation delay, the outflow interacts with environmental gas and produces shock waves that accelerate electrons to very high energies; these electrons then emit GeV γ rays as optically thin synchrotron radiation. This observation implies that a relativistic outflow is associated with the magnetar giant flare, and suggests the possibility that magnetars can power some short γ-ray bursts.
  •  
6.
  • Balázs, C., et al. (författare)
  • A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications
  • 2021
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; 2021:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weak-scale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms.
  •  
7.
  • Jóhannesson, Gudlaugur, et al. (författare)
  • Cosmic-ray Propagation in Light of Recent HAWC Observations of Pulsar Wind Nebula
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Recent observations made with the High Altitude Water Cherenkov (HAWC) telescope of pulsar wind nebula (PWN) suggest that the diffusion in their vicinity is characterised with a lower diffusion constant than that predicted for propagation in the interstellar medium from observations of cosmic-ray (CR) fluxes at Earth. In this contribution, it is shown that models with the slow diffusion region localised about PWN can successfully explain the HAWC observations of the Geminga PWN and still retain consistency with other CR measurements. Parameter exploration shows that the size of the smaller diffusion zone has implications for the both the PWN emission at lower energies observable by the Fermi Large Area Telescope and the predicted positron flux at the Earth. Unless the Geminga PWN is unique, there are likely many small regions with slow diffusion throughout the Milky Way. The consequences for the propagation of CRs and the resulting interstellar emissions from across the Galaxy are discussed and explored.
  •  
8.
  • Jóhannesson, Gudlaugur, et al. (författare)
  • Signatures of Recent Cosmic-Ray Acceleration in the High-latitude Gamma-Ray Sky
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic-ray (CR) sources temporarily enhance the relativistic particle density in their vicinity over the background distribution accumulated from the Galaxy-wide past injection activity and propagation. If individual sources are close enough to the solar system, their localized enhancements may present as features in the measured spectra of the CRs and in the associated secondary electromagnetic emissions. Large-scale loop-like structures visible in the radio sky are possible signatures of such nearby CR sources. If so, these loops may also have counterparts in the high-latitude gamma-ray sky. Using similar to 10 yr of data from the Fermi Large Area Telescope, applying Bayesian analysis including Gaussian Processes, we search for extended enhanced emission associated with putative nearby CR sources in the energy range from 1 GeV to 1 TeV for the sky region divide b divide > 30 degrees. We carefully control the systematic uncertainty due to imperfect knowledge of the interstellar gas distribution. Radio Loop IV is identified for the first time as a gamma-ray emitter, and we also find significant emission from Loop I. Strong evidence is found for asymmetric features about the Galactic l = 0 degrees meridian that may be associated with parts of the so-called "Fermi Bubbles," and some evidence is also found for gamma-ray emission from other radio loops. Implications for the CRs producing the features and possible locations of the sources of the emissions are discussed.
  •  
9.
  • Panes, Boris, et al. (författare)
  • Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challenge
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656, s. A62-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At GeV energies, the sky is dominated by the interstellar emission from the Galaxy. With limited statistics and spatial resolution, accurately separating point sources is therefore challenging. Aims. Here we present the first application of deep learning based algorithms to automatically detect and classify point sources from gamma-ray data. For concreteness we refer to this approach as AutoSourceID. Methods. To detect point sources, we utilized U-shaped convolutional networks for image segmentation and k-means for source clustering and localization. We also explored the Centroid-Net algorithm, which is designed to find and count objects. Using two algorithms allows for a cross check of the results, while a combination of their results can be used to improve performance. The training data are based on 9.5 years of exposure from The Fermi Large Area Telescope (Fermi-LAT) and we used source properties of active galactic nuclei (AGNs) and pulsars (PSRs) from the fourth Fermi-LAT source catalog in addition to several models of background interstellar emission. The results of the localization algorithm are fed into a classification neural network that is trained to separate the three general source classes (AGNs, PSRs, and FAKE sources). Results. We compared our localization algorithms qualitatively with traditional methods and find them to have similar detection thresholds. We also demonstrate the robustness of our source localization algorithms to modifications in the interstellar emission models, which presents a clear advantage over traditional methods. The classification network is able to discriminate between the three classes with typical accuracy of similar to 70%, as long as balanced data sets are used in classification training. We published online our training data sets and analysis scripts and invite the community to join the data challenge aimed to improve the localization and classification of gamma-ray point sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy