SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Johansson J.O.) srt2:(2020-2024)"

Search: WFRF:(Johansson J.O.) > (2020-2024)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Noveir, S. D., et al. (author)
  • Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys
  • 2022
  • In: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background: Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer’s disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-β peptides (Aβ) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. Methods: CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aβ were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. Results: Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aβ42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aβ42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. Conclusions: Treatment with the ABCA1 agonist CS-6253 appears to favor Aβ clearance from the brain.
  •  
2.
  • Cummings, J., et al. (author)
  • Cognitive Effects of the BET Protein Inhibitor Apabetalone: A Prespecified Montreal Cognitive Assessment Analysis Nested in the BETonMACE Randomized Controlled Trial
  • 2021
  • In: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 83:4, s. 1703-1715
  • Journal article (peer-reviewed)abstract
    • Background: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer's disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic "readers" that may distort normal gene expression and contribute to chronic disorders. Objective: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). Methods: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score >= 26 (normal performance), MoCA score 25-22 (mild cognitive impairment), and MoCA score <= 21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. Results: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of <= 21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). Conclusion: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.
  •  
3.
  • Ernits, Karin, et al. (author)
  • The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - 1091-6490 .- 0027-8424. ; 120:33, s. 1-12
  • Journal article (peer-reviewed)abstract
    • Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.
  •  
4.
  • Gapińska, Marta, et al. (author)
  • Structure-functional characterization of Lactococcus AbiA phage defense system
  • 2024
  • In: Nucleic Acids Research. - 1362-4962. ; 52:8, s. 4723-4738
  • Journal article (peer-reviewed)abstract
    • Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.
  •  
5.
  • Rosendahl, Sara, et al. (author)
  • CCR3 deficiency is associated with increased osteoclast activity and reduced cortical bone volume in adult male mice
  • 2021
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 296
  • Journal article (peer-reviewed)abstract
    • Increasing evidence emphasizes the importance of chemokines and chemokine receptors as regulators of bone remodeling. The C–C chemokine receptor 3 (CCR3) is dramatically upregulated during osteoclastogenesis, but the role of CCR3 in osteoclast formation and bone remodeling in adult mice is unknown. Herein, we used bone marrow macrophages derived from adult male CCR3-proficient and CCR3-deficient mice to study the role of CCR3 in osteoclast formation and activity. CCR3 deficiency was associated with formation of giant hypernucleated osteoclasts, enhanced bone resorption when cultured on bone slices, and altered mRNA expression of related chemokine receptors and ligands. In addition, primary mouse calvarial osteoblasts isolated from CCR3-deficient mice showed increased mRNA expression of the osteoclast activator–related gene, receptor activator of nuclear factor kappa-B ligand, and osteoblast differentiation–associated genes. Microcomputed tomography analyses of femurs from CCR3-deficient mice revealed a bone phenotype that entailed less cortical thickness and volume. Consistent with our in vitro studies, the total number of osteoclasts did not differ between the genotypes in vivo. Moreover, an increased endocortical osteoid mineralization rate and higher trabecular and cortical bone formation rate was displayed in CCR3-deficient mice. Collectively, our data show that CCR3 deficiency influences osteoblast and osteoclast differentiation and that it is associated with thinner cortical bone in adult male mice.
  •  
6.
  • Xu, Fu, et al. (author)
  • SSD1 modifies phenotypes of Elongator mutants
  • 2020
  • In: Current Genetics. - : Springer-Verlag New York. - 0172-8083 .- 1432-0983. ; 66, s. 481-485
  • Research review (peer-reviewed)abstract
    • The translational decoding properties of tRNAs are influenced by post-transcriptional modification of nucleosides in their anticodon region. The Elongator complex promotes the first step in the formation of 5-methoxycarbonylmethyl (mcm(5)), 5-methoxycarbonylhydroxymethyl (mchm(5)), and 5-carbamoylmethyl (ncm(5)) groups on wobble uridine residues in eukaryotic cytosolic tRNAs. Elongator mutants in yeast, worms, plants, mice, and humans not only show a tRNA modification defect, but also a diverse range of additional phenotypes. Even though the phenotypes are almost certainly caused by the reduced functionality of the hypomodified tRNAs in translation, the basis for specific phenotypes is not well understood. Here, we discuss the recent finding that the phenotypes of Saccharomyces cerevisiae Elongator mutants are modulated by the genetic background. This background-effect is largely due to the allelic variation at the SSD1 locus, which encodes an mRNA-binding protein involved in post-transcriptional regulation of gene expression. A nonsense ssd1 allele is found in several wild-type laboratory strains and the presence of this allele aggravates the stress-induced phenotypes of Elongator mutants. Moreover, other phenotypes, such as the histone acetylation and telomeric gene silencing defects, are dependent on the mutant ssd1 allele. Thus, SSD1 is a genetic modifier of the phenotypes of Elongator-deficient yeast cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view