SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klecker B) srt2:(2005-2009)"

Sökning: WFRF:(Klecker B) > (2005-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Giang, Tony, et al. (författare)
  • Outflowing protons and heavy ions as a source for the sub-keV ringcurrent
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:2, s. 839-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster CIS instrument have been used for studying proton and heavy ion (O+ and He+ ) char- acteristics of the sub-keV ring current. Thirteen events with dispersed heavy ions (O+ and He+ ) were identified out of two years (2001 and 2002) of Cluster data. Allevents took place during rather geomagnetically quiet periods. Three of those events have been investigated in detail: 21 August 2001, 26 November 2001 and 20 February 2002. These events were chosen from varying magnetic local times (MLT), and they showed different characteristics. In this article, we discuss the potential source for sub-keV ring current ions. We show that: (1) outflows of terrestrialsub-keV ions are supplied to the ring current also during quiet geomagnetic conditions; (2) the composition of the out-flow implies an origin that covers an altitude interval from the low-altitude ionosphere to the plasmasphere, and (3) terrestrial ions are moving upward along magnetic field lines, at times forming narrow collimated beams, but  frequently also as broad beams. Over time, the ion beams are expected to gradually become isotropised as a result of wave-particleinteraction, eventually taking the form of isotropic drifting sub-keV ion signatures. We argue that the sub-keV energy-time dispersed signatures originate from field-aligned terrestrial ion energising and outflow, which may occur at all local times and persist also during quiet times.
  •  
3.
  •  
4.
  • Bavassano Cattaneo, M. Bice, et al. (författare)
  • Kinetic signatures during a quasi-continuous lobe reconnection event : Cluster Ion Spectrometer (CIS) observations
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:A9, s. A09212-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 3 December 2001 the Cluster spacecraft observed a long-lasting lobe reconnection event in the southern high-latitude dusk magnetopause (MP) tailward of the cusp, during a 4 hour interval of mainly northward interplanetary magnetic field ( IMF) and of sub-Alfvenic magnetosheath flow. Almost all the MP encounters have accelerated flows ( for which the Walen test has been successfully verified by Retino et al. ( 2005)) as well as a large number of secondary populations related to reconnection, that is, ions of magnetosheath or magnetospheric origin which cross the MP either way. The detailed analysis of the distribution functions shows that the reconnection site frequently moves relative to the spacecraft, but simultaneous measurements by two spacecraft on opposite sides of the reconnection site indicate that the spacecraft's distance from the X line is small, i.e., below 3200 km. The vicinity to the X line throughout the event is probably the reason why the distribution functions characteristics agree with theoretical expectations on both sides of the reconnection site throughout this long event. Moreover, the detailed analysis of the distribution functions shows evidence, during a few time intervals, of dual reconnection, i.e., of reconnection simultaneously going on also in the northern hemisphere.
  •  
5.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4131-4146
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, and in a companion paper by Hamrin et al. (2009) [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15-20RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E.J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs) as Concentrated Generator Regions (CGRs). We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL). For both CLRs and CGRs, E and J in the GSM y (cross-tail) direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.
  •  
6.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4147-4155
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 R-E in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E.J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 R-E less than or similar to Delta 1 S-ECR less than or similar to 5 R-E. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.
  •  
7.
  • Keika, K., et al. (författare)
  • Response of the inner magnetosphere and the plasma sheet to a sudden impulse
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S35-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] The passage of an interplanetary shock caused a sudden compression of the magnetosphere between 0900 UT and 0915 UT on 24 August 2005. An estimate of the shock normal from solar wind data obtained by Geotail upstream of the bow shock indicates symmetric compression with respect to the noon-midnight meridian. Compression-related disturbances of the magnetic and electric field and plasma motion were observed by Double Star Program (DSP) Tan Ce 1 (TC1) and Tan Ce 2 (TC2) in the inner magnetosphere and by the Cluster spacecraft in the dawnside plasma sheet. DSP/TC1 and TC2 observations suggest that the disturbances in the inner magnetosphere are propagating from the dayside magnetopause. Cluster S/C 4 observations indicate that the front normal of the disturbances in the dawnside plasma sheet is phi similar to 180 degrees at 0902: 50 UT and phi = 107 degrees at 0904: 34 UT, where phi is the longitude in GSM coordinates, if we assume that the measured electric field is on the front plane and the normal lies on the X-Y plane. The timing analysis applied to magnetic field data from the four Cluster spacecraft independently gives a front normal, which is calculated to be phi =131 degrees at about 0904: 20 UT. Shock-associated magnetic and electric field disturbances propagating from both the dayside and flank magnetopauses are detected in the plasma sheet; the latter makes the dominant contribution. Substorms are, however, not triggered at the passage of the disturbances.
  •  
8.
  • Marghitu, O., et al. (författare)
  • Auroral arc and oval electrodynamics in the Harang region
  • 2009
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • Auroral arcs are typically described in terms of an upward field-aligned current (FAC) sheet above the arc, connected by ionospheric Pedersen current to a downward FAC sheet near the arc. On the basis of data measured by the FAST spacecraft, conjugate with ground optical observations, we present first a wide and stable winter evening arc, where this standard model does not apply. The arc is observed in the Harang region during the growth phase of a modest substorm, poleward of the convection reversal (CR) boundary. Although the magnetic field data suggest the typical configuration, the two FAC sheets appear to be decoupled near the satellite footprint: the upward FAC is fed by the westward electrojet (WEJ), while the downward FAC feeds the eastward electrojet (EEJ). The examination of the arc by the newly developed ALADYN technique confirms this peculiar current topology. For comparison, we apply ALADYN also to a second evening arc, located within the Harang region equatorward from the CR. The arc is confirmed to have the standard configuration, consistent with a former study, but substantial FAC-EJ coupling is inferred in the auroral oval both poleward and equatorward of the arc. A key element for the topology of the current closure is the westward component of the electric field, which influences the relative location of the CR with respect to the large-scale FAC reversal (FR) boundary. As proved by tests on synthetic data, a westward component of the electric field pushes the CR toward the FR, preventing thus the standard FAC closure, while the conductance and FAC pattern shape the CR profile. Since a westward electric field is often measured in the Harang region, the FAC-EJ coupling is expected to be an essential ingredient there. This has important implications for the current closure in the equatorial magnetosphere and for the auroral current circuit in the WEJ region, closely related to the substorm process.
  •  
9.
  • Nakamura, R., et al. (författare)
  • Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S16-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Cluster observations of a thin current sheet interval under the presence of a strong vertical bar B-Y vertical bar during a fast earthward flow interval between 1655 UT and 1703 UT on 17 August 2003. The strong vertical bar B-Y vertical bar in the tail could be associated with a strong IMF vertical bar B-Y vertical bar, but the large fluctuations in B-Y, not seen in the IMF, suggest that a varying reconnection rate causes a varying transport of B-Y-dominated magnetic flux and/or a change in B-Y due to the Hall-current system. During the encounter of the high-speed flow, an intense current layer was observed around 1655: 53 UT with a peak current density of 182 nA/m(2), the largest current density observed by the Cluster four-spacecraft magnetic field measurement in the magnetotail. The half width of this current layer was estimated to be similar to 290 km, which was comparable to the ion-inertia length. Its unique signature is that the strong current is mainly field-aligned current flowing close to the center of the plasma sheet. The event was associated with parallel heating of electrons with asymmetries, which suggests that electrons moving along the field lines can contribute to a strong dawn-to-dusk current when the magnetotail current sheet becomes sufficiently thin and active in a strong guide field case.
  •  
10.
  • Nakamura, R., et al. (författare)
  • Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:4, s. 1743-1754
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the evolution of dipolarization and associated disturbances of the near-Earth current sheet during a substorm on 27 October 2007, based upon Cluster multi-point, multi-scale observations of the night-side plasma sheet at X similar to - 10R(E). Three dipolarization events were observed accompanied by activations on ground magnetograms at 09: 07, 09: 14, and 09: 22 UT. We found that all these events consist of two types of dipolarization signatures: (1) Earthward moving dipolarization pulse, which is accompanied by enhanced rapid Earthward flux transport and is followed by current sheet disturbances with decrease in B-Z and enhanced local current density, and subsequent (2) increase in B-Z toward a stable level, which is more prominent at Earthward side and evolving tailward. During the 09: 07 event, when Cluster was located in a thin current sheet, the dipolarization and fast Earthward flows were also accompanied by further thinning of the current sheet down to a half-thickness of about 1000 km and oscillation in a kink-like mode with a period of similar to 15 s and propagating duskward. Probable cause of this "flapping current sheet" is shown to be the Earthward high-speed flow. The oscillation ceased as the flow decreased and the field configuration became more dipolar. The later rapid flux transport events at 09: 14 and 09: 22 UT took place when the field configuration was initially more dipolar and were also associated with B-Z disturbance and local current density enhancement, but to a lesser degree. Hence, current sheet disturbances induced by initial dipolarization pulses could differ, depending on the configuration of the current sheet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy