SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laaksonen Marko) srt2:(2001-2004)"

Sökning: WFRF:(Laaksonen Marko) > (2001-2004)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kalliokoski, K.K, et al. (författare)
  • Muscle fractal vascular branching pattern and microvascular perfusion heterogeneity in endurance-trained and untrained men
  • 2003
  • Ingår i: Journal of Physiology. - : Wiley. - 0022-3751 .- 1469-7793. ; 546:pt2, s. 529-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Less heterogeneous skeletal muscle perfusion has recently been reported in endurance-trained compared to untrained men at macrovascular level. The causes of this difference in perfusion heterogeneity are unknown as is whether the same difference is observed in microvasculature. We hypothesised that the difference could be caused by changes in muscle vascular branching pattern. Perfusion was measured in resting and exercising muscle in 14 endurance-trained and seven untrained men using [(15)O]water and positron emission tomography. Fractal dimension (D) of perfusion distribution was calculated as a measure of fractal characteristics of muscle vascular branching pattern. Perfusion heterogeneity in microvascular units (1 mm(3) samples) was estimated using the measured heterogeneity in voxels of positron emission tomography (PET) images (relative dispersion, RD = S.D./mean) and corresponding D values. D was similar between the groups (exercising muscle 1.11 +/- 0.07 and 1.14 +/- 0.06, resting muscle 1.12 +/- 0.06 and 1.14 +/- 0.03, trained and untrained, respectively). Trained men had lower perfusion (151 +/- 44 vs. 218 +/- 87 ml min(-1) kg(-1), P < 0.05) and macrovascular perfusion heterogeneity (relative dispersion 21 +/- 5 vs. 25 +/- 5 %, P < 0.05) in exercising muscle than untrained men. Furthermore, estimated perfusion heterogeneity in microvascular units in exercising muscle was also lower in trained men (33 +/- 7 vs.48 +/- 19 %, P < 0.05). These results show that fractal vascular branching pattern is similar in endurance-trained and untrained men but perfusion is less heterogeneous at both the macro- and the microvascular level in endurance-trained men. Thus, changes in fractal branching pattern do not explain the differences in perfusion heterogeneity between endurance-trained and untrained men.
  •  
3.
  •  
4.
  •  
5.
  • Kalliokoski, K K, et al. (författare)
  • Perfusion distribution between and within muscles during intermittent static exercise in endurance-trained and untrained men
  • 2003
  • Ingår i: International Journal of Sports Medicine. - : Georg Thieme Verlag KG. - 0172-4622 .- 1439-3964. ; 24, s. 400-403
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that muscle perfusion varies between different quadriceps femoris muscles during submaximal exercise in humans. In animals, endurance training changes perfusion distribution between muscles during exercise. Whether the same is observed in humans is currently unknown. Therefore, we compared perfusion levels between different parts of the quadriceps femoris muscle group during one-legged intermittent static exercise in seven endurance-trained and seven untrained men. Muscle perfusion was measured using positron emission tomography with [ 15O]-H 2 O. In addition, relative dispersion of perfusion (standard deviation within a region/mean within a region x 100 %) within each muscle region was calculated as an index of perfusion heterogeneity within the muscles. Muscle perfusion tended to be lower in endurance-trained men (p = 0.16) and it was also different between the regions (p < 0.001). However, perfusion distributed similarly between the groups (p = 0.51). Relative dispersion of perfusion within the muscles was lower in endurance-trained men (p = 0.01) and it was also different between muscles (p < 0.001). These results suggest that endurance training does not alter perfusion distribution between muscles, but it decreases perfusion heterogeneity within the muscles.
  •  
6.
  • Kalliokoski, KK, et al. (författare)
  • Myocardial perfusion after marathon running
  • 2004
  • Ingår i: Scandinavian Journal of Medicine and Science in Sport. - : Wiley. - 0905-7188 .- 1600-0838. ; 14:4, s. 208-214
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the effects of acute prolonged exercise (marathon running) on cardiac function and myocardial perfusion. Cardiac dimensions and function were measured in seven endurance-trained men using echocardiography before and repeatedly after marathon (42.2 km) running (at 10 min, 150 min, and 20 h). Myocardial perfusion and perfusion resistance were measured using positron emission tomography and 15O-H2O before and 85-115 min after running. Echocardiographic indices showed only mild and clinically non-significant changes in cardiac function after running. Rate-pressure-corrected basal myocardial perfusion (0.89+/-0.13 vs. 1.20+/-0.32 mL min(-1) g(-1), P=0.04) was increased after running. Also, adenosine-stimulated perfusion tended to be higher (3.67+/-0.81 vs. 4.47+/-0.52 mL min(-1) g(-1), P=0.12) and perfusion resistance during adenosine stimulation was significantly lower after running (26+/-6 vs. 18+/-3 mmHg min g mL(-1), P=0.03). Plasma free fatty acid (FFA) concentration was significantly increased after running. These results show that marathon running does not cause marked changes in cardiac function in healthy men. Basal perfusion was increased after exercise, probably reflecting changes in fuel preferences to increased use of FFAs. Strenuous exercise also seems to enhance coronary reactivity, which could thereby serve as a protective mechanism to vascular events after exercise.
  •  
7.
  •  
8.
  • Kalliokoski,, et al. (författare)
  • Muscle oxygen extraction and perfusion heterogeneity during continuous and intermittent static exercise
  • 2003
  • Ingår i: Journal of Applied Physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 94, s. 953-958
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to compare the effects of intermittent and continuous static exercise on muscle perfusion, perfusion heterogeneity, and oxygen extraction. Perfusion and oxygen uptake of quadriceps femoris muscle were measured in 10 healthy men by using positron emission tomography and [(15)O]H(2)O and [(15)O]O(2) first during intermittent static exercise [10% of maximal static force (MSF)] and thereafter during continuous static exercise at the same tension-time level (5% static; 5% of MSF). In 4 of these subjects, perfusion was measured during continuous static exercise with 10% of MSF (10% continuous) instead of the second [(15)O]O(2) measurement. Muscle oxygen consumption was similar during intermittent and 5% continuous, but muscle perfusion was significantly higher during 5% continuous. Consequently, muscle oxygen extraction fraction was lower during 5% continuous. Perfusion was also more heterogeneous during 5% continuous. When exercise intensity was doubled during continuous static exercise (from 5% continuous to 10% continuous), muscle perfusion increased markedly. These results suggest that continuous, low-intensity static exercise decreases muscle oxygen extraction and increases muscle perfusion and its heterogeneity compared with intermittent static exercise at the same relative exercise intensity.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy