SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landström Maréne) srt2:(2000-2004)"

Sökning: WFRF:(Landström Maréne) > (2000-2004)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bu, Shizhong, et al. (författare)
  • Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells
  • 2002
  • Ingår i: FEBS Letters. - 0014-5793 .- 1873-3468. ; 531:2, s. 141-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate and breast carcinomas are sex hormone-related carcinomas, which are known to be associated with an over-expression of the proto-oncogene Bcl-2. Here, we report that 2-methoxyestradiol (2-ME), an endogenous metabolite of estrogen that does not bind to nuclear estrogen receptors, effectively induces apoptosis in Bcl-2-expressing human prostate and breast carcinoma cells in vitro and in a rat prostate tumor model in vivo. In several cell lines derived from prostate, breast, liver and colorectal carcinomas, 2-ME treatment led to an activation of c-Jun N-terminal kinase (JNK) and phosphorylation of Bcl-2, which preceded the induction of apoptosis. In summary, our data suggest that 2-ME induces apoptosis in epithelial carcinomas by causing phosphorylation of JNK, which appears to be correlated with phosphorylation of Bcl-2.
  •  
2.
  •  
3.
  • Davoodpour, Padideh, et al. (författare)
  • Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates
  • 2004
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 31:7, s. 867-874
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate the potential use of PET in vivo to record cytotoxic effects of 2-methoxyestradiol (2-ME), an endogenous metabolite of 17beta-estradiol. The anti-proliferative and pro-apoptotic effects of 2-ME on human prostate cancer cell (PC3) aggregates in vitro, were correlated with the uptake of fluoro-deoxy-D-glucose, FMAU and choline labelled with 18F, 11C, or 3H. 2-ME clearly reduced growth of PC3 aggregates and induced apoptosis in a dose-dependent manner. However, the uptake of the putative proliferation markers 11C-FMAU or 3H-choline failed to record the growth inhibitory effects of 2-ME on PC3 cell aggregates. The uptake of 18F-FDG was used as a marker for effects on cellular metabolism and also failed to show any dose-dependent effects in PC3 aggregates. The use of these PET-tracers in vivo is therefore not recommended in order to evaluate the cytotoxic effects of 2-ME on human prostate cancer cells.
  •  
4.
  • Edlund, Sofia (författare)
  • Mechanisms for TGF-β-Mediated Regulation of the Actin Filament System and Apoptosis
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transforming growth factor-β (TGF-β) is a member of a large superfamily of cytokines which participate in many different types of cellular processes, such as growth inhibition, cell migration, differentiation, cell adhesion, wound healing and immunosuppression. Alterations of TGF-β superfamily signalling results in several different disorders, including bone disease, vascular disease and cancer. The TGF-β signalling pathways involve several different proteins, such as the Smad proteins, which upon receptor activation are translocated to the nucleus, where they affect transcriptional responses. The actin cytoskeleton is an organised network of filaments with a highly dynamic structure, which is under a continuous reconstruction to control the morphology, survival, growth and motility of eukaryotic cells. The members of the family of small GTP-binding proteins have been shown to be important regulators of the actin cytoskeleton.TGF-β was found to induce short term as well as long term actin reorganisation in prostate cancer cells. The short term response included membrane ruffling, and required signalling by the small GTPases Cdc42 and Rho as well as, the involvement of the mitogen-activated protein kinases p38 (p38 MAPK). The long term response included formation of stress fibers and required a cooperation between Smad and Rho GTPase signalling pathways involving the Rho-associated coiled-coil-containing protein kinase 1 (ROCK1). The TGF-β-induced activation of Cdc42 was, furthermore, shown to require the inhibitory Smad7 and p38 MAP kinase, via a PI3K-dependent pathway. Mixed lineage kinase 3 (MLK3), a mediator downstream of Cdc42, was necessary for the Cdc42-dependent actin filament reorganisation.Apoptosis is an important and carefully regulated process in human development and disease, which allows the multicellular organisms to remove cells that are in excess or potentially dangerous. TGF-β family members can induce apoptosis in many different cell types, in the presence or absence of other growth factors. Smad7 had previously been shown to be necessary for TGF-β-induced apoptosis of epithelial cells. We could show that Smad7 is required for TGF-β-induced activation of the TGF-β activated kinase 1 (TAK1)-mitogen-activated protein kinase kinase 3 (MKK3)-p38 MAPK pathway, which subsequently leads to apoptosis in prostate cancer cells.Members of the lymphoid enhancer factor-1/T-cell factor (LEF1/TCF) family of transcription factors have, together with β-catenin, been shown to be nuclear effectors in the Wnt-signalling pathway. We investigated a possible cross-talk between the TGF-β and Wnt signalling pathways. We found that TGF-β, in a Smad7-dependent manner induced a nuclear accumulation of β-catenin and enhanced the transcriptional activity of β-catenin and the induction of the downstream target gene c-myc. Since β-catenin and c-Myc has been shown to promote apoptosis, our results suggests the possibility that β-catenin contributes to TGF-β-induced apoptosis
  •  
5.
  • Edlund, Sofia, et al. (författare)
  • Smad7 is required for TGF-ß-induced activation of the small GTPase Cdc42
  • 2004
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 117:Pt 9, s. 1835-1847
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. The inhibitory Smads, Smad6 and Smad7, are considered to function as negative regulators of the TGF-beta/Smad signaling cascade. In a previous study, we found that TGF-beta induces rearrangements of the actin filament system in human prostate carcinoma cells and that this response requires the small GTPases Cdc42 and RhoA. On the basis of the current view on the function of Smad7 in TGF-beta signaling, we hypothesized that Smad7 would function as a negative regulator of the TGF-beta-induced activation of Cdc42 and RhoA, but instead we found that the reverse is the case; Smad7 is required for the TGF-beta-induced activation of Cdc42 and the concomitant reorganization of the actin filament system. These observations propose a novel role for Smad7 in TGF-beta-dependent activation of Rho GTPases.
  •  
6.
  • Edlund, Sofia, et al. (författare)
  • Transforming growth factor-beta-induced mobilization of actin cytoskeleton required signaling by small GTPases Cdc42 and RhoA
  • 2002
  • Ingår i: Molecular Biology of the Cell. - : The American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 13:3, s. 902-914
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta 1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta 1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is p38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta 1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.
  •  
7.
  • Edlund, Sofia, et al. (författare)
  • Transforming growth factor-beta1-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3
  • 2003
  • Ingår i: Molecular Biology of the Cell. - : The American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 14:2, s. 529-544
  • Tidskriftsartikel (refereegranskat)abstract
    • The inhibitory Smad7, a direct target gene for transforming growth factor-beta (TGF-beta), mediates TGF-beta1-induced apoptosis in several cell types. Herein, we report that apoptosis of human prostate cancer PC-3U cells induced by TGF-beta1 or Smad7 overexpression is caused by a specific activation of the p38 mitogen-activated protein kinase pathway in a TGF-beta-activated kinase 1 (TAK1)- and mitogen-activated protein kinase kinase 3 (MKK3)-dependent manner. Expression of dominant negative p38, dominant negative MKK3, or incubation with the p38 selective inhibitor [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole], prevented TGF-beta1-induced apoptosis. The expression of Smad7 was required for TGF-beta-induced activation of MKK3 and p38 kinases, and endogenous Smad7 was found to interact with phosphorylated p38 in a ligand-dependent manner. Ectopic expression of wild-type TAK1 promoted TGF-beta1-induced phosphorylation of p38 and apoptosis, whereas dominant negative TAK1 reduced TGF-beta1-induced phosphorylation of p38 and apoptosis. Endogenous Smad7 was found to interact with TAK1, and TAK1, MKK3, and p38 were coimmunoprecipitated with Smad7 in transiently transfected COS1 cells. Moreover, ectopically expressed Smad7 enhanced the coimmunoprecipitation of HA-MKK3 and Flag-p38, supporting the notion that Smad7 may act as a scaffolding protein and facilitate TAK1- and MKK3-mediated activation of p38.
  •  
8.
  •  
9.
  • Li, Li, et al. (författare)
  • Induction of apoptosis and G2/M arrest by 2-methoxyestradiol in human cervical cancer HeLaS3 cells.
  • 2004
  • Ingår i: Anticancer Res. - Athens : International institute for anticancer research. - 0250-7005 .- 1791-7530. ; 24:2B, s. 873-80
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: It has been demonstrated that 2-Methoxyestradiol (2-ME), one of the estrogen metabolites, induces apoptosis in many different tumor cell lines. In the present study, the effects of 2-ME on human cervical cancer HeLaS3 cells and on normal cervical epithelial cells were evaluated. MATERIALS AND METHODS: Acridine orange staining, DNA fragmentation arrays and flow cytometry were used to measure the apoptosis and cell cycle progression. In addition, the effect of 2-ME on expression of iNOS was measured by Western blot. RESULTS: 2-ME inhibited the growth of HeLaS3 cells. This growth inhibition was accompanied by apoptosis and G2/M cell cycle arrest. 2-ME increased the expression of iNOS in parallel with apoptosis. Moreover, apoptosis was prevented by the iNOS inhibitor 1400W. 2-ME treatment resulted in a slight increase of the G2/M population, but no apoptosis, in normal cervical epithelial cells. There was no synergetic effect between E2 and 2-ME. CONCLUSION: 2-ME induced apoptosis via the iNOS pathway and caused G2/M cell cycle arrest in human cervical cancer HeLaS3 cells, but showed only slight effects on normal cervical epithelial cells. These data suggest that 2-ME might be an adjuvant agent in the treatment of cervical cancer.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy