SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lassen Carin) srt2:(2010-2014)"

Sökning: WFRF:(Lassen Carin) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Askmyr, Maria, et al. (författare)
  • Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells.
  • 2014
  • Ingår i: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34(+) cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML.
  •  
2.
  • Järås, Marcus, et al. (författare)
  • Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:37, s. 16280-16285
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate their Ph-chromosome status. Interestingly, we found that the CML CD34(+)CD38(-)IL1RAP(+) cells were Ph(+), whereas CML CD34(+)CD38(-)IL1RAP(-) cells were almost exclusively Ph(-). By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph(+) and Ph(-) candidate CML stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34(+)CD38(-) cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell surface biomarker distinguishing Ph(+) from Ph(-) candidate CML stem cells and opens up a previously unexplored avenue for therapy of CML.
  •  
3.
  • Larsson, Nina, et al. (författare)
  • Genetic analysis of dasatinib-treated chronic myeloid leukemia rapidly developing into acute myeloid leukemia with monosomy 7 in Philadelphia-negative cells.
  • 2010
  • Ingår i: Cancer Genetics and Cytogenetics. - : Elsevier BV. - 0165-4608. ; 199:2, s. 89-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the recent success of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), approximately 2-17% of patients develop clonal cytogenetic changes in the Philadelphia-negative (Ph(-)) cell population. A fraction of these patients, in particular those displaying trisomy 8 or monosomy 7, are at risk of developing a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Consequently, there is a need to characterize the clinical features of such cases and to increase our understanding of the pathogenetic mechanisms underlying the emergence of clonal cytogenetic changes in Ph(-) cells. To date, most cases reported have received treatment with imatinib. Here we describe the case of a patient with CML who developed monosomy 7 in Ph(-) cells during dasatinib therapy. At 20 months after dasatinib initiation, the patient developed MDS, which rapidly progressed into AML. Genome-wide 500K SNP array analysis of the monosomy 7 clone revealed no acquired submicroscopic copy number changes. Given the strong association between monosomy 7 and mutation of genes involved in the RAS pathway in juvenile myelomonocytic leukemia, we also screened for pathogenetic variants in KRAS, NRAS, and PTPN11, but did not detect any changes.
  •  
4.
  • Larsson, Nina, et al. (författare)
  • Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations(a).
  • 2012
  • Ingår i: European Journal of Haematology. - : Wiley. - 1600-0609 .- 0902-4441. ; 88:2, s. 136-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Acquired trisomy 21 is one of the most common numerical abnormalities in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), and MDS/MPN; however, little is known about its pathogenic impact, accompanying submicroscopic changes, and its relation to other clinical features. Furthermore, previous studies addressing this issue have mainly focused on cases in which +21 was part of a complex karyotype. Methods: We ascertained the incidence of +21, both as a sole change (T21s) and irrespective of additional changes (T21all), in relation to disease type, morphologic subgroup, gender, and age in all published AML, MDS, MPN, and MDS/MPN cases. Furthermore, single nucleotide polymorphism (SNP) array analysis was performed on 11 myeloid malignancies with T21s, followed by mutation analysis of the FGFR1, FLT3, GATA1, JAK2, KIT, NPM1, NRAS, RUNX1, and TET2 genes. Results: The frequencies of T21s and/or T21all varied significantly among the AML, MDS, MPN and MDS/MPN cases, among the AML and MPN subtypes, and in relation to the age of the AML, MDS, and MPN patients. In the 11 cases analyzed by SNP array, a total of nine genomic imbalances, comprising seven deletions and two duplications, were identified in six cases; none of the alterations were recurrent. Partial uniparental disomies (UPDs) were found in five cases; two recurrent UPDs were identified, namely UPD4q and UPD7q. Mutations in NPM1, RUNX1, and TET2 were detected in five cases, three of which harboured a pathogenic RUNX1 mutation. The TET2 mutation was found in one of the cases with UPD4q. Conclusions: The results show that trisomy 21-positive myeloid malignancies are clinically highly variable and that they display a heterogeneous pattern of copy number alterations and mutations.
  •  
5.
  • Lilljebjörn, Henrik, et al. (författare)
  • Whole-exome sequencing of pediatric acute lymphoblastic leukemia
  • 2012
  • Ingår i: Leukemia. - : Nature Publishing Group. - 0887-6924 .- 1476-5551. ; 26:7, s. 1602-1607
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Ågerstam, Helena, et al. (författare)
  • Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 116:12, s. 2103-2111
  • Tidskriftsartikel (refereegranskat)abstract
    • The 8p11 myeloproliferative syndrome (EMS), also referred to as stem cell leukemia/lymphoma, is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinases in FGFR1. To date, no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context, that of normal primary human hematopoietic cells. Herein, we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilicalcord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice, expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS, including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover, bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes, by themselves, are capable of initiating an EMS-like disorder, and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder. (Blood. 2010;116(12):2103-2111)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy