SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leandri Valentina) ;srt2:(2024)"

Sökning: WFRF:(Leandri Valentina) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Church, Tamara L., et al. (författare)
  • A microporous polymer based on nonconjugated hindered biphenyls that emits blue light
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microporous organic polymers that have three-dimensional connectivity stemming from monomers with tetrahedral or tetrahedron-like geometry can have high surface areas and strong fluorescence. There are however few examples of such polymers based on hindered biaryls, and their fluorescence has not been studied. Hypothesizing that the contortion in a hindered biphenyl moiety would modulate the optical properties of a polymer built from it, we synthesized a meta-enchained polyphenylene from a 2,2',6,6'-tetramethylbiphenyl-based monomer, in which the two phenyl rings are nearly mutually perpendicular. The polymer was microporous with S-BET = 495 m(2) g(-1). The polymer absorbed near-UV light and emitted blue fluorescence despite the meta-enchainment that would have been expected to break the conjugation. A related copolymer, synthesized from 2,2',6,6'-tetramethylbiphenyl-based and unsubstituted biphenyl-based monomers, was microporous but not fluorescent.
  •  
2.
  • Church, Tamara L., et al. (författare)
  • A microporous polymer based on nonconjugated hindered biphenyls that emits blue light
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microporous organic polymers that have three-dimensional connectivity stemming from monomers with tetrahedral or tetrahedron-like geometry can have high surface areas and strong fluorescence. There are however few examples of such polymers based on hindered biaryls, and their fluorescence has not been studied. Hypothesizing that the contortion in a hindered biphenyl moiety would modulate the optical properties of a polymer built from it, we synthesized a meta-enchained polyphenylene from a 2,2ʹ,6,6ʹ-tetramethylbiphenyl-based monomer, in which the two phenyl rings are nearly mutually perpendicular. The polymer was microporous with SBET = 495 m2 g−1. The polymer absorbed near-UV light and emitted blue fluorescence despite the meta-enchainment that would have been expected to break the conjugation. A related copolymer, synthesized from 2,2ʹ,6,6ʹ-tetramethylbiphenyl-based and unsubstituted biphenyl-based monomers, was microporous but not fluorescent. © The Author(s) 2024.
  •  
3.
  • Petsagkourakis, Ioannis, et al. (författare)
  • Polymerization of benzoxazine impregnated in porous carbons. A scalable and low-cost route to smart copper-ion absorbents with saturation indicator function
  • 2024
  • Ingår i: Process Safety and Environmental Protection. - : Institution of Chemical Engineers. - 0957-5820 .- 1744-3598. ; 184, s. 782-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous carbon materials are common materials used for sensor and absorbent applications. A novel approach for functionalizing porous carbons through the impregnation of porous carbon black with benzoxazine monomers, followed by thermal polymerization is introduced herein. The method not only establishes a new avenue for the functionalization of porous carbons but also endows the resulting material with both copper ion-binding and sensing properties. We showcase the versatility of the technique by illustrating that the polymerization of phenols with benzoxazine monomers serves as an extra tool to customize absorption- and sensing properties. Experimental validation involved testing the method on carbon black as a porous substrate, which was impregnated with both bisphenol-a benzoxazine and a combination of bisphenol-a benzoxazine and alizarin. The resulting materials were assessed for their dual functionality as both an absorbent and a sensor for copper ions by varied copper ion concentrations and exposure times. The dye absorption test demonstrated a notable capacity to accumulate copper ions from dilute solutions. Electrochemical characterization further confirmed the effectiveness of the modified carbons, as electrodes produced from inks were successful in detecting copper ions accumulated from 50 μM Cu2+ solutions. With this work, we aspire to set the steppingstone towards a facile functionalization of porous carbon materials towards water purification applications. © 2024 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy