SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luukkonen Panu K) srt2:(2017)"

Sökning: WFRF:(Luukkonen Panu K) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lallukka, Susanna, et al. (författare)
  • Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in humans
  • 2017
  • Ingår i: Thrombosis and Haemostasis. - 0340-6245. ; 117:2, s. 286-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased liver fat may be caused by insulin resistance and adipose tissue inflammation or by the common I148M variant in PNPLA3 at rs738409, which lacks both of these features. We hypothesised that obesity/insulin resistance rather than liver fat increases circulating coagulation factor activities. We measured plasma prothrombin time (PT, Owren method), activated partial thromboplastin time (APTT), activities of several coagulation factors, VWF:RCo and fibrinogen, and D-dimer concentration in 92 subjects divided into groups based on insulin sensitivity [insulin-resistant (‘IR’) versus insulin-sensitive (‘IS’)] and PNPLA3 genotype (PNPLA3148MM/ MI vs PNPLA3148II). Liver fat content (1H-MRS) was similarly increased in ‘IR’ (13 ± 1%) and PNPLA3148MM/MI (12 ± 2%) as compared to ‘IS’ (6 ± 1%, p<0.05) and PNPLA3148II (8 ± 1%, p<0.05), respectively. FVIII, FIX, FXIII, fibrinogen and VWF:RCo activities were increased, and PT and APTT shortened in ‘IR’ versus ‘IS’, in contrast to these factors being similar between PNPLA3148MM/MI and PNPLA3148II groups. In subjects undergoing a liver biopsy and entirely lacking the I148M variant, insulin-resistant subjects had higher hepatic expression of F8, F9 and FGG than equally obese insulin-sensitive subjects. Expression of pro-inflammatory genes in adipose tissue correlated positively with PT (% of normal), circulating FVIII, FIX, FXI, VWR:RCo and fibrinogen, and expression of anti-inflammatory genes negatively with PT (%), FIX and fibrinogen. We conclude that obesity/insulin resistance rather than an increase in liver fat is associated with a procoagulant plasma profile. This reflects adipose tissue inflammation and increased hepatic production of coagulation factors and their susceptibility for activation.
  •  
2.
  • Lallukka, Susanna, et al. (författare)
  • Predictors of Liver Fat and Stiffness in Non-Alcoholic Fatty Liver Disease (NAFLD) - An 11-Year Prospective Study
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver fat can be non-invasively measured by proton magnetic resonance spectroscopy (1H-MRS) and fibrosis estimated as stiffness using transient elastography (FibroScan). There are no longitudinal data on changes in liver fat in Europids or on predictors of liver stiffness using these methods. We determined liver fat (1H-MRS) and clinical characteristics including features of insulin resistance at baseline and after a median follow-up period of 11.3 (range 7.3-13.4) years in 97 Finnish subjects. Liver stiffness was measured at 11.3 years. Liver fat content decreased by 5% (p < 0.05) over time. Values at baseline and 11.3 years were closely interrelated (r = 0.81, p < 0.001). Baseline liver fat (OR 1.32; 95%CI: 1.15-1.50) and change in BMI (OR 1.67; 95%CI: 1.24-2.25) were independent predictors of liver fat at 11.3 years (AUROC 0.90; 95%CI: 0.83-0.96). Baseline liver fat (AUROC 0.84; 95%CI: 0.76-0.92) predicted liver fat at 11.3 years more accurately than routinely available parameters (AUROC 0.76; 95%CI: 0.65-0.86, p = 0.02). At 11.3 years, 29% of the subjects had increased liver stiffness. Baseline liver fat (OR 2.17; 95%CI: 1.05-4.46) was an independent predictor of increased liver stiffness. These data show that liver fat is more important than the associated metabolic abnormalities as the predictor of future liver fat and fibrosis.
  •  
3.
  • Luukkonen, Panu K., et al. (författare)
  • Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD
  • 2017
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 67:1, s. 128-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Carriers of the transmembrane 6 superfamily member 2 E167K gene variant (TM6SF2(EK/KK)) have decreased expression of the TM6SF2 gene and increased risk of NAFLD and NASH. Unlike common 'obese/metabolic' NAFLD, these subjects lack hypertriglyceridemia and have lower risk of cardiovascular disease. In animals, phosphatidylcholine (PC) deficiency results in a similar phenotype. PCs surround the core of VLDL consisting of triglycerides (TGs) and cholesteryl-esters (CEs). We determined the effect of the TM6SF2 E167K on these lipids in the human liver and serum and on hepatic gene expression and studied the effect of TM6SF2 knockdown on hepatocyte handling of these lipids.Methods: Liver biopsies were taken from subjects characterized with respect to the TM6SF2 genotype, serum and liver lipidome, gene expression and histology. In vitro, after TM6SF2 knockdown in HuH-7 cells, we compared incorporation of different fatty acids into TGs, CEs, and PCs.Results: The TM6SF2(EK/KK) and TM6SF2EE groups had similar age, gender, BMI and HOMA-IR. Liver TGs and CEs were higher and liver PCs lower in the TM6SF2(EK/KK) than the TM6SF2EE group (p<0.05). Polyunsaturated fatty acids (PUFA) were deficient in liver and serum TGs and liver PCs but hepatic free fatty acids were relatively enriched in PUFA (p<0.05). Incorporation of PUFA into TGs and PCs in TM6SF2 knockdown hepatocytes was decreased (p< 0.05). Hepatic expression of TM6SF2 was decreased in variant carriers, and was co-expressed with genes regulated by PUFAs.Conclusions: Hepatic lipid synthesis from PUFAs is impaired and could contribute to deficiency in PCs and increased intrahepatic TG in TM6SF2 E167K variant carriers. (C) 2017 European Association for the Study of the Liver.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy