SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahade Satyapal 1987 ) srt2:(2016)"

Sökning: WFRF:(Mahade Satyapal 1987 ) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mahade, Satyapal, 1987-, et al. (författare)
  • Erosion Behavior of Gadolinium Zirconate/YSZ Multi-Layered Thermal Barrier Coatings Deposited by Suspension Plasma Spray
  • 2016
  • Ingår i: Proceedings of the International Thermal Spray Conference. ; , s. 343-347
  • Konferensbidrag (refereegranskat)abstract
    • Yttria stabilized zirconia (8YSZ) is the standard ceramic material for thermal barrier coating (TBC)applications. However, above 1200º C, it has limitations such as poor sintering resistance & susceptibility to CMAS(Calcium Magnesium Alumino Silicates) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperature (>1200 ºC) due to its lower thermal conductivity, good sintering resistance and CMAS infiltration resistance. Single layer 8YSZ, double layer GZ/YSZand triple layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS). Microstructuralanalysis was carried out by SEM (scanning electron microscopy). Phase analysis of as sprayed TBCs was carriedout using XRD (X ray diffraction). The as sprayed multi-layered TBCs were subjected to erosion test at room temperature and their erosion resistance was compared with single layer 8YSZ. It was observed that the erosion resistance of 8YSZ TBC was higher than GZ/YSZ multi-layered TBCs at room temperature. Among the multilayered TBCs, triple layer TBC was slightly better than double layer in terms of erosion resistance.
  •  
2.
  • Mahade, Satyapal, 1987-, et al. (författare)
  • Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue
  • 2016
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 689, s. 1011-1019
  • Tidskriftsartikel (refereegranskat)abstract
    • 8 wt.% yttria stabilized zirconia (8YSZ) is the standard ceramic top coat material used in thermal barrier coatings (TBCs) due to its excellent thermo-physical and thermo-mechanical properties. However, above 1200 °C, YSZ has issues such as susceptibility to CMAS (Calcium Magnesium Alumino Silicates) attack and enhanced sintering which could lead to catastrophic failure of the TBC. Pyrochlores of rare earth zirconate composition such as gadolinium zirconate have shown to be resistant to CMAS attack and at the same time possess several other attractive properties. However, poor thermal cycling life of single layer gadolinium zirconate (GZ) TBC compared to single layer YSZ has been reported. Therefore, a double layered GZ/YSZ TBC with YSZ as the intermediate coating and GZ as the top coat and a single layer 8YSZ were deposited by the axial suspension plasma spray process. Additionally, a triple layer TBC (GZdense/GZ/YSZ) comprising of denser GZ coating on top of GZ/YSZ TBC was deposited. SEM analysis revealed a columnar microstructure in the single, double and triple layer TBCs. XRD analysis confirmed the presence of tetragonal prime and defect fluorite phases in the top surface of YSZ and GZ based as sprayed TBCs respectively. The single layer YSZ and GZ/YSZ multi-layered TBCs were subjected to thermal cyclic fatigue (TCF) testing at 1100 °C and 1200 °C. The triple layer TBC showed a higher thermal cyclic life at both the temperatures compared to the single and double layer TBCs. The failed TBCs at 1100 °C were analyzed by SEM/EDS and image analysis. It was found that the failure modes in single layer YSZ and GZ based TBCs were different.
  •  
3.
  • Mahade, Satyapal, 1987- (författare)
  • Functional Performance of Gadolinium Zirconate/Yttria Stabilized Zirconia Multi-Layered Thermal Barrier Coatings
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Yttria stabilized zirconia (YSZ) is the state of the art ceramic top coat material used for TBC applications. The desire to achieve a higher engine efficiency of agas turbine engine by increasing the turbine inlet temperature has pushed YSZ toits upper limit. Above 1200°C, issues such as poor phase stability, high sinteringrates, and susceptibility to CMAS (calcium magnesium alumino silicates) degradation have been reported for YSZ based TBCs. Among the new materials,gadolinium zirconate (GZ) is an interesting alternative since it has shown attractive properties including resistance to CMAS attack. However, GZ has a poor thermo-chemical compatibility with the thermally grown oxide leading to poor thermal cyclic performance of GZ TBCs and that is why a multi-layered coating design seems feasible.This work presents a new approach of depositing GZ/YSZ multi-layered TBCs by the suspension plasma spray (SPS) process. Single layer YSZ TBCs were also deposited by SPS and used as a reference.The primary aim of the work was to compare the thermal conductivity and thermal cyclic life of the two coating designs. Thermal diffusivity of the YSZ single layer and GZ based multi-layered TBCs was measured using laser flash analysis (LFA). Thermal cyclic life of as sprayed coatings was evaluated at 1100°C, 1200°C and 1300°C respectively. It was shown that GZ based multi-layered TBCs had a lower thermal conductivity and higher thermal cyclic life compared to the single layer YSZ at all test temperatures. The second aim was to investigate the isothermal oxidation behaviour and erosion resistance of the two coating designs. The as sprayed TBCs were subjected toisothermal oxidation test at 1150°C. The GZ based multi-layered TBCs showed a lower weight gain than the single layer YSZ TBC. However, in the erosion test,the GZ based TBCs showed lower erosion resistance compared to the YSZ singlelayer TBC. In this work, it was shown that SPS is a promising production technique and that GZ is a promising material for TBCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy