SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Monsef Nastaran) srt2:(2015-2019)"

Sökning: WFRF:(Monsef Nastaran) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Isaksson, Sofi, et al. (författare)
  • CA 19-9 and CA 125 as potential predictors of disease recurrence in resectable lung adenocarcinoma
  • 2017
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Among patients who underwent primary surgery for non-small cell lung cancer (NSCLC), recurrent disease is frequent and cannot be accurately predicted solely from TNM stage and histopathological features. The aim of this study was to examine the association of tumor markers in pre-operative serum with recurrent disease. Material and methods Blood samples were collected prior to lung cancer surgery from 107 patients with stage I-III lung adenocarcinoma surgically treated at Lund University hospital, Lund, Sweden, between 2005 and 2011. The serum tumor markers Carcinoembryonic antigen (CEA), Neuron-specific enolase (NSE), Cancer antigen 125 (CA 125), Human epididymis protein 4 (HE4) and Carbohydrate antigen (CA 19-9) were analyzed retrospectively and clinical follow-up data were collected from patient charts. Forty (37%) patients were diagnosed with recurrent disease. Results Sixty-eight (64%) patients had at least one elevated tumor marker prior to surgery. In analysis of disease-free survival (DFS), CA 125 and/or CA 19-9 were significantly associated with recurrent disease adjusted to stage and adjuvant treatment (hazard ratio 2.8, 95% confidence interval 1.4-5.7, p = 0.006). Conclusion High pre-operative serum CA 19-9 and/or CA 125 might indicate an increased incidence of recurrent disease in resectable lung adenocarcinomas.
  •  
2.
  • Karlsson, Anna, et al. (författare)
  • A combined gene expression tool for parallel histological prediction and gene fusion detection in non-small cell lung cancer
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate histological classification and identification of fusion genes represent two cornerstones of clinical diagnostics in non-small cell lung cancer (NSCLC). Here, we present a NanoString gene expression platform and a novel platform-independent, single sample predictor (SSP) of NSCLC histology for combined, simultaneous, histological classification and fusion gene detection in minimal formalin fixed paraffin embedded (FFPE) tissue. The SSP was developed in 68 NSCLC tumors of adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large-cell neuroendocrine carcinoma (LCNEC) histology, based on NanoString expression of 11 (CHGA, SYP, CD56, SFTPG, NAPSA, TTF-1, TP73L, KRT6A, KRT5, KRT40, KRT16) relevant genes for IHC-based NSCLC histology classification. The SSP was combined with a gene fusion detection module (analyzing ALK, RET, ROS1, MET, NRG1, and NTRK1) into a multicomponent NanoString assay. The histological SSP was validated in six cohorts varying in size (n = 11-199), tissue origin (early or advanced disease), histological composition (including undifferentiated cancer), and gene expression platform. Fusion gene detection revealed five EML4-ALK fusions, four KIF5B-RET fusions, two CD74-NRG1 fusion and three MET exon 14 skipping events among 131 tested cases. The histological SSP was successfully trained and tested in the development cohort (mean AUC = 0.96 in iterated test sets). The SSP proved successful in predicting histology of NSCLC tumors of well-defined subgroups and difficult undifferentiated morphology irrespective of gene expression data platform. Discrepancies between gene expression prediction and histologic diagnosis included cases with mixed histologies, true large cell carcinomas, or poorly differentiated adenocarcinomas with mucin expression. In summary, we present a proof-of-concept multicomponent assay for parallel histological classification and multiplexed fusion gene detection in archival tissue, including a novel platform-independent histological SSP classifier. The assay and SSP could serve as a promising complement in the routine evaluation of diagnostic lung cancer biopsies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy