SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mutanen M) srt2:(2020-2024)"

Sökning: WFRF:(Mutanen M) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kivelä, Sami M., et al. (författare)
  • Comparative analysis of larval growth in Lepidoptera reveals instar-level constraints
  • 2020
  • Ingår i: Functional Ecology. - : Wiley. - 0269-8463 .- 1365-2435. ; 34:7, s. 1391-1403
  • Tidskriftsartikel (refereegranskat)abstract
    • Juvenile growth trajectories evolve via the interplay of selective pressures on age and size at maturity, and developmental constraints. In insects, the moulting cycle is a major constraint on larval growth trajectories. Surface area to volume ratio of a larva decreases during growth, so renewal of certain surfaces by moulting is likely needed for the maintenance of physiological efficiency. A null hypothesis of isometry, implied by Dyar's Rule, would mean that the relative measures of growth remain constant across moults and instars. We studied ontogenetic changes and allometry in instar-specific characteristics of larval growth in 30 lepidopteran species in a phylogenetic comparative framework. Relative instar-specific mass increments (RMI) typically, but not invariably, decreased across instars. Ontogenetic change in RMIs varied among families with little within-family variation. End-of-instar growth deceleration (GD) became stronger with increasing body size across instars. Across-instar change in GD was conserved across taxa. Ontogenetic allometry was generally non-isometric in both RMI and GD. Results indicate that detailed studies on multiple species are needed for generalizations concerning growth trajectory evolution. Developmental and physiological mechanisms affecting growth trajectory evolution show different degrees of evolutionary conservatism, which must be incorporated into models of age and size at maturation.
  •  
3.
  • Kozlov, Mikhail, V, et al. (författare)
  • Climate shapes the spatiotemporal variation in color morph diversity and composition across the distribution range of Chrysomela lapponica leaf beetle
  • 2022
  • Ingår i: Insect Science. - : John Wiley & Sons. - 1672-9609 .- 1744-7917. ; 29:3, s. 942-955
  • Tidskriftsartikel (refereegranskat)abstract
    • Color polymorphism offers rich opportunities for studying the eco-evolutionary mechanisms that drive the adaptations of local populations to heterogeneous and changing environments. We explored the color morph diversity and composition in a Chrysomela lapponica leaf beetle across its entire distribution range to test the hypothesis that environmental and climatic variables shape spatiotemporal variation in the phenotypic structure of a polymorphic species. We obtained information on 13 617 specimens of this beetle from museums, private collections, and websites. These specimens (collected from 1830-2020) originated from 959 localities spanning 33 degrees latitude, 178 degrees longitude, and 4200 m altitude. We classified the beetles into five color morphs and searched for environmental factors that could explain the variation in the level of polymorphism (quantified by the Shannon diversity index) and in the relative frequencies of individual color morphs. The highest level of polymorphism was found at high latitudes and altitudes. The color morphs differed in their climatic requirements; composition of colour morphs was independent of the geographic distance that separated populations but changed with collection year, longitude, mean July temperature and between-year temperature fluctuations. The proportion of melanic beetles, in line with the thermal melanism hypothesis, increased with increasing latitude and altitude and decreased with increasing climate seasonality. Melanic morph frequencies also declined during the past century, but only at high latitudes and altitudes where recent climate warming was especially strong. The observed patterns suggest that color polymorphism is especially advantageous for populations inhabiting unpredictable environments, presumably due to the different climatic requirements of coexisting color morphs.
  •  
4.
  •  
5.
  •  
6.
  • Roslin, Tomas, et al. (författare)
  • A molecular-based identification resource for the arthropods of Finland
  • 2022
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:2, s. 803-822
  • Tidskriftsartikel (refereegranskat)abstract
    • To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy