SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mutsaerts H) srt2:(2024)"

Sökning: WFRF:(Mutsaerts H) > (2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lorenzini, Luigi, et al. (författare)
  • Alzheimer's disease genetic pathways impact cerebrospinal fluid biomarkers and imaging endophenotypes in non-demented individuals
  • 2024
  • Ingår i: ALZHEIMERS & DEMENTIA. - 1552-5260 .- 1552-5279.
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. Highlights Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.
  •  
3.
  •  
4.
  • Tranfa, Mario, et al. (författare)
  • Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure
  • 2024
  • Ingår i: ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY. - 2328-9503. ; 11:6, s. 1541-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveAlzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-epsilon 4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults.MethodsWithin the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 +/- 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid beta 1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 +/- 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract.ResultsAD pathology, APOE-epsilon 4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-epsilon 4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect.InterpretationOur results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy