SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niedermann Florian) srt2:(2022)"

Sökning: WFRF:(Niedermann Florian) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, E., et al. (författare)
  • Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
  • 2022
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 34, s. 49-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. 
  •  
2.
  • Copeland, Edmund J., et al. (författare)
  • Generalised scalar-tensor theories and self-tuning
  • 2022
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :3
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore a family of generalised scalar-tensor theories that exhibit self-tuning to low scale anti de Sitter vacua, even in the presence of a large cosmological constant. We are able to examine the linearised fluctuations about these vacua and compute the corresponding amplitude. Thanks to a subtle interplay between a weak scalar coupling and a low scalar mass, it is possible to exhibit self-tuning and compatibility with solar system tests of gravity without resorting to non-linearities and unreliable screening mechanisms. The weakness of the scalar coupling and the correspondingly slow response to vacuum energy phase transitions may present some interesting possibilities for connecting early universe inflation to the cancellation of vacuum energy.
  •  
3.
  • Niedermann, Florian, et al. (författare)
  • Hot new early dark energy
  • 2022
  • Ingår i: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 105:6
  • Tidskriftsartikel (refereegranskat)abstract
    • New early dark energy (NEDE) makes the cosmic microwave background consistent with a higher value of the Hubble constant inferred from supernovae observations. It is a better alternative to the old EDE model because it explains naturally the decay of the extra energy component in terms of a vacuum first order phase transition that is triggered by a subdominant scalar field at zero temperature. With hot NEDE, we introduce a new mechanism to trigger the phase transition. It relies on thermal corrections that subside as a subdominant radiation fluid in a dark gauge sector cools. We explore the phenomenology of hot NEDE and identify the strong supercooled regime as the scenario favored by phenomenology. In a second step, we propose different microscopic embeddings of hot NEDE. This includes the (non-)Abelian dark matter model, which has the potential to also resolve the LSS tension through interactions with the dark radiation fluid. We also address the coincidence problem generically present in EDE models by relating NEDE to the mass generation of neutrinos via the inverse seesaw mechanism. We finally propose a more complete dark sector model, which embeds the NEDE field in a larger symmetry group and discuss the possibility that the hot NEDE field is central for spontaneously breaking lepton number symmetry.
  •  
4.
  • Niedermann, Florian, et al. (författare)
  • Hot new early dark energy : Towards a unified dark sector of neutrinos, dark energy and dark matter
  • 2022
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 835
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot new early dark energy describes a supercooled, first-order phase transition that takes place at sub-eV temperatures in the dark sector. It lowers the sound horizon, which provides a possible solution to the Hubble tension, and, at the same time, it can explain the neutrino masses through the inverse seesaw mechanism by making a set of sterile Majorana fermions massive. First, we argue that this scenario strengthens existing cosmological bounds on the heaviest neutrino mass. This, in turn, constrains the dark sector temperature, which provides us in total with two falsifiable predictions. In a second step, we discuss the phenomenological consequences of embedding hot new early dark energy in a larger gauge group that is partially broken above the TeV scale. This novel theory, which could even be motivated independently of the Hubble tension, completes the high-energy corner of the inverse seesaw mechanism and explains the mass of a dark matter candidate that can be produced through gravitational interactions at high energies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy