SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salazar Onfray F) srt2:(2015-2019)"

Sökning: WFRF:(Salazar Onfray F) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arce, Maximiliano, et al. (författare)
  • Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation
  • 2019
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
  •  
3.
  • Gonzalez, FE, et al. (författare)
  • Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy
  • 2018
  • Ingår i: Journal of immunology research. - : Hindawi Limited. - 2314-7156 .- 2314-8861. ; 2018, s. 3982942-
  • Tidskriftsartikel (refereegranskat)abstract
    • Autologous dendritic cells (DCs) loaded with cancer cell-derived lysates have become a promising tool in cancer immunotherapy. During the last decade, we demonstrated that vaccination of advanced melanoma patients with autologous tumor antigen presenting cells (TAPCells) loaded with an allogeneic heat shock- (HS-) conditioned melanoma cell-derived lysate (called TRIMEL) is able to induce an antitumor immune response associated with a prolonged patient survival. TRIMEL provides not only a broad spectrum of potential melanoma-associated antigens but also danger signals that are crucial in the induction of a committed mature DC phenotype. However, potential changes induced by heat conditioning on the proteome of TRIMEL are still unknown. The identification of newly or differentially expressed proteins under defined stress conditions is relevant for understanding the lysate immunogenicity. Here, we characterized the proteomic profile of TRIMEL in response to HS treatment. A quantitative label-free proteome analysis of over 2800 proteins was performed, with 91 proteins that were found to be regulated by HS treatment: 18 proteins were overexpressed and 73 underexpressed. Additionally, 32 proteins were only identified in the HS-treated TRIMEL and 26 in non HS-conditioned samples. One protein from the overexpressed group and two proteins from the HS-exclusive group were previously described as potential damage-associated molecular patterns (DAMPs). Some of the HS-induced proteins, such as haptoglobin, could be also considered as DAMPs and candidates for further immunological analysis in the establishment of new putative danger signals with immunostimulatory functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy