SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sano Satoshi) srt2:(2020-2023)"

Sökning: WFRF:(Sano Satoshi) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dukic Marinkov, Emilija, 1991, et al. (författare)
  • Chloroplast magnesium transporters play essential but differential roles in maintaining magnesium homeostasis
  • 2023
  • Ingår i: Frontiers in Plant Science. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium (Mg2+ ) is essential for photosynthesis in the chloroplasts of land plants and algae. Being the central ion of chlorophyll, cofactor and activator of many photosynthetic enzymes including RuBisCO, magnesium-deficient plants may suffer from leaf chlorosis symptoms and retarded growth. Therefore, the chloroplast Mg2+ concentration is tightly controlled by magnesium transport proteins. Recently, three different transporters from two distinct families have been identified in the chloroplast inner envelope of the model plant Arabidopsis thaliana: MGT10, MGR8, and MGR9. Here, we assess the individual roles of these three proteins in maintaining chloroplast Mg2+ homeostasis and regulating photosynthesis, and if their role is conserved in the model green alga Chlamydomonas reinhardtii. Phylogenetic analysis and heterologous expression revealed that the CorC-like MGR8 and MGR9 transport Mg2+ by a different mechanism than the CorA-like MGT10. MGR8 and MGT10 genes are highest expressed in leaves, indicating a function in chloroplast Mg2+ transport. MGR9 is important for chloroplast function and plant adaptation in conditions of deficiency or excess of Mg2+ . Transmission electron microscopy indicated that MGT10 plays a differential role in thylakoid stacking than MGR8 and MGR9. Furthermore, we report that MGR8, MGR9, and MGT10 are involved in building up the pH gradient across the thylakoid membrane and activating photoprotection in conditions of excess light, however the mechanism has not been resolved yet. While there are no chloroplast MGR-like transporters in Chlamydomonas, we show that MRS4 is a homolog of MGT10, that is required for photosynthesis and cell growth. Taken together, our findings reveal that the studied Mg2+ transporters play essential but differential roles in maintaining chloroplast Mg2+ homeostasis.
  •  
2.
  • Podobas, Artur, et al. (författare)
  • A Survey on Coarse-Grained Reconfigurable Architectures From a Performance Perspective
  • 2020
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 8, s. 146719-146743
  • Tidskriftsartikel (refereegranskat)abstract
    • With the end of both Dennard's scaling and Moore's law, computer users and researchers are aggressively exploring alternative forms of computing in order to continue the performance scaling that we have come to enjoy. Among the more salient and practical of the post-Moore alternatives are reconfigurable systems, with Coarse-Grained Reconfigurable Architectures (CGRAs) seemingly capable of striking a balance between performance and programmability. In this paper, we survey the landscape of CGRAs. We summarize nearly three decades of literature on the subject, with a particular focus on the premise behind the different CGRAs and how they have evolved. Next, we compile metrics of available CGRAs and analyze their performance properties in order to understand and discover knowledge gaps and opportunities for future CGRA research specialized towards High-Performance Computing (HPC). We find that there are ample opportunities for future research on CGRAs, in particular with respect to size, functionality, support for parallel programming models, and to evaluate more complex applications.
  •  
3.
  • Podobas, Artur, et al. (författare)
  • A template-based framework for exploring coarse-grained reconfigurable architectures
  • 2020
  • Ingår i: Proceedings 31st IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP). - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 1-8
  • Konferensbidrag (refereegranskat)abstract
    • Coarse-Grained Reconfigurable Architectures (CGRAs) are being considered as a complementary addition to modern High-Performance Computing (HPC) systems. These reconfigurable devices overcome many of the limitations of the (more popular) FPGA, by providing higher operating frequency, denser compute capacity, and lower power consumption. Today, CGRAs have been used in several embedded applications, including automobile, telecommunication, and mobile systems, but the literature on CGRAs in HPC is sparse and the field full of research opportunities. In this work, we introduce our CGRA simulator infrastructure for use in evaluating future HPC CGRA systems. Our CGRA simulator is built on synthesizable VHDL and is highly parametrizable, including support for connectivity, SIMD, data-type width, and heterogeneity. Unlike other related work, our framework supports co-integration with third-party memory simulators or evaluation of future memory architecture, which is crucial to reason around memory-bound applications. We demonstrate how our framework can be used to explore the performance of multiple different kernels, showing the impact of different configuration and design-space options.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy