SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Silva Sánchez Noemí) srt2:(2018)"

Search: WFRF:(Silva Sánchez Noemí) > (2018)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gallego-Sala, Angela V., et al. (author)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Journal article (peer-reviewed)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
2.
  • Kylander, Malin E., et al. (author)
  • Mineral dust as a driver of carbon accumulation in northern latitudes
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Peatlands in northern latitudes sequester one third of the world's soil organic carbon. Mineral dusts can affect the primary productivity of terrestrial systems through nutrient transport but this process has not yet been documented in these peat-rich regions. Here we analysed organic and inorganic fractions of an 8900-year-old sequence from Store Mosse (the "Great Bog") in southern Sweden. Between 5420 and 4550 cal yr BP, we observe a seven-fold increase in net peat-accumulation rates corresponding to a maximum carbon-burial rate of 150 g C m(-2) yr(-1) -more than six times the global average. This high peat accumulation event occurs in parallel with a distinct change in the character of the dust deposited on the bog, which moves from being dominated by clay minerals to less weathered, phosphate and feldspar minerals. We hypothesize that this shift boosted nutrient input to the bog and stimulated ecosystem productivity. This study shows that diffuse sources and dust dynamics in northern temperate latitudes, often overlooked by the dust community in favour of arid and semi-arid regions, can be important drivers of peatland carbon accumulation and by extension, global climate, warranting further consideration in predictions of future climate variability.
  •  
3.
  • Pérez-Rodríguez, Marta, et al. (author)
  • Industrial-era lead and mercury contamination in southern Greenland implicates North American sources
  • 2018
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 613, s. 919-930
  • Journal article (peer-reviewed)abstract
    • To study the long-range transport of atmospheric pollutants from lower latitude industrial areas to the Arctic, we analysed a peat core spanning the last similar to 700 cal. yr (similar to 1300-2000 CE) from southern Greenland, an area sensitive to atmospheric pollution from North American and Eurasian sources. A previous investigation conducted in the same location recorded atmospheric lead (Pb) pollution after similar to 1845, with peak values recorded in the 1970s, and concluded that a North American source was most likely. To confirm the origin of the lead, we present new Pb isotope data from Sandhavn, together with a high-resolution record for mercury (Hg) deposition. Results demonstrate that the mercury accumulation rate has steadily increased since the beginning of the 19th century, with maximum values of 9.3 mu g m(-2) yr(-1) recorded similar to 1940. Lead isotopic ratios show two mixing lines: one which represents inputs from local and regional geogenic sources, and another that comprises regional geogenic and pollution sources. Detrending the Pb isotopic ratio record (thereby extracting the effect of the geogenic mixing) has enabled us to reconstruct a detailed chronology of metal pollution. The first sustained decrease in Pb isotope signals is recorded as beginning similar to 1740-1780 with the lowest values (indicating the highest pollution signature) dated to similar to 1960-1970. The 206Pb/207Pb ratio of excess Pb (measuring 1.222, and reflecting pollution generated Pb), when compared with the Pb isotopic composition of the Sandhavn peat record since the 19th century and the timing of Pb enrichments, clearly points to the dominance of pollution sources fromNorth America, although it did not prove possible to further differentiate the emissions sources geographically.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view