SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strand Robin 1978 ) srt2:(2020-2024)"

Sökning: WFRF:(Strand Robin 1978 ) > (2020-2024)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Jan W, et al. (författare)
  • Tissue-specific glucose partitioning and fat content in prediabetes and type 2 diabetes: whole-body PET/MRI during hyperinsulinemia
  • 2021
  • Ingår i: European journal of endocrinology. - : Bioscientifica. - 0804-4643 .- 1479-683X. ; 184:6, s. 879-899
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To obtain direct quantifications of glucose turnover, volumes an d fat content of several tissues in the development of type 2 diabetes (T2D) using a novel integrated a pproach for whole-body imaging. Design and methods: Hyperinsulinemic-euglycemic clamps and simultaneous whole-body integrated [18F]FDG-PET/MRI with automated analyses were performed in control (n = 12), prediabetes (n = 16) and T2D (n = 13) subjects matched for age, sex and BMI. Results: Whole-body glucose uptake (Rd) was reduced by approximately 25% in T2D vs control subjects, and partitioning to brain was increased from 3.8% of total Rd in co ntrols to 7.1% in T2D. In liver, subcutaneous AT, thigh muscle, total tissue glucose metabolic rates (MRglu) and their % of total Rd were reduced in T2D compared to contr ol subjects. The prediabetes group had intermediate findings. Total MRglu in heart, visceral AT, gluteus and calf muscle was similar across groups. Whole-body insulin sensitivity asses sed as glucose infusion rate correlated with liver MR glu but inversely with brain MRglu. Liver fat content correlated with MRglu in brain but inversely with MRglu in other tissues. Calf muscle fat was inversely associated with MR glu only in the same muscle group. Conclusions: This integrated imaging approach provides detailed quantification of tissue-specific glucose metabolism. During T2D development, insulin-stimulated glucose disposal is impaired and increasingly shifted away from muscle, liver and fat toward the brain. Altered glucose handling in the brain and liver fat accumulation may aggravate insulin resistance in several organs. © 2021 BioScientifica Ltd.. All rights reserved.
  •  
2.
  • Guglielmo, Priscilla, et al. (författare)
  • Validation of automated whole-body analysis of metabolic and morphological parameters from an integrated FDG-PET/MRI acquisition
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Automated quantification of tissue morphology and tracer uptake in PET/MR images could streamline the analysis compared to traditional manual methods. To validate a single atlas image segmentation approach for automated assessment of tissue volume, fat content (FF) and glucose uptake (GU) from whole-body [18F]FDG-PET/MR images. Twelve subjects underwent whole-body [18F]FDG-PET/MRI during hyperinsulinemic-euglycemic clamp. Automated analysis of tissue volumes, FF and GU were achieved using image registration to a single atlas image with reference segmentations of 18 volume of interests (VOIs). Manual segmentations by an experienced radiologist were used as reference. Quantification accuracy was assessed with Dice scores, group comparisons and correlations. VOI Dice scores ranged from 0.93 to 0.32. Muscles, brain, VAT and liver showed the highest scores. Pancreas, large and small intestines demonstrated lower segmentation accuracy and poor correlations. Estimated tissue volumes differed significantly in 8 cases. Tissue FFs were often slightly but significantly overestimated. Satisfactory agreements were observed in most tissue GUs. Automated tissue identification and characterization using a single atlas segmentation performs well compared to manual segmentation in most tissues and will be valuable in future studies. In certain tissues, alternative quantification methods or improvements to the current approach is needed.
  •  
3.
  • Ahmad, Nouman, et al. (författare)
  • Automatic segmentation of large-scale CT image datasets for detailed body composition analysis
  • 2023
  • Ingår i: BMC BIOINFORMATICS. - : BioMed Central (BMC). - 1471-2105. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundBody composition (BC) is an important factor in determining the risk of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a useful imaging technique for studying BC, however manual segmentation of CT images is time-consuming and subjective. The purpose of this study is to develop and evaluate fully automated segmentation techniques applicable to a 3-slice CT imaging protocol, consisting of single slices at the level of the liver, abdomen, and thigh, allowing detailed analysis of numerous tissues and organs.MethodsThe study used more than 4000 CT subjects acquired from the large-scale SCAPIS and IGT cohort to train and evaluate four convolutional neural network based architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The segmentation techniques were developed and evaluated for automated segmentation of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular adipose tissue (IMAT). The models were trained and validated for each target using tenfold cross-validation and test sets.ResultsThe Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909-0.996), UNET++ 0.981 (0.927-0.996), Ghost-UNET 0.961 (0.904-0.991), and Ghost-UNET++ 0.968 (0.910-0.994). All four models showed relatively strong results, however UNET++ had the best performance overall. Ghost-UNET++ performed competitively compared to UNET++ and showed a more computationally efficient approach.ConclusionFully automated segmentation techniques can be successfully applied to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. The overall best performance was achieved by UNET++, against which Ghost-UNET++ showed competitive results based on a more computationally efficient approach. The use of fully automated segmentation methods can reduce analysis time and provide objective results in large-scale studies of BC.
  •  
4.
  • Ahmad, Nouman, et al. (författare)
  • Voxel-wise body composition analysis using image registration of a three-slice CT imaging protocol : methodology and proof-of-concept studies
  • 2024
  • Ingår i: Biomedical engineering online. - : Springer Nature. - 1475-925X. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Computed tomography (CT) is an imaging modality commonly used for studies of internal body structures and very useful for detailed studies of body composition. The aim of this study was to develop and evaluate a fully automatic image registration framework for inter-subject CT slice registration. The aim was also to use the results, in a set of proof-of-concept studies, for voxel-wise statistical body composition analysis (Imiomics) of correlations between imaging and non-imaging data.Methods The current study utilized three single-slice CT images of the liver, abdomen, and thigh from two large cohort studies, SCAPIS and IGT. The image registration method developed and evaluated used both CT images together with image-derived tissue and organ segmentation masks. To evaluate the performance of the registration method, a set of baseline 3-single-slice CT images (from 2780 subjects including 8285 slices) from the SCAPIS and IGT cohorts were registered. Vector magnitude and intensity magnitude error indicating inverse consistency were used for evaluation. Image registration results were further used for voxel-wise analysis of associations between the CT images (as represented by tissue volume from Hounsfield unit and Jacobian determinant) and various explicit measurements of various tissues, fat depots, and organs collected in both cohort studies.Results Our findings demonstrated that the key organs and anatomical structures were registered appropriately. The evaluation parameters of inverse consistency, such as vector magnitude and intensity magnitude error, were on average less than 3 mm and 50 Hounsfield units. The registration followed by Imiomics analysis enabled the examination of associations between various explicit measurements (liver, spleen, abdominal muscle, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), thigh SAT, intermuscular adipose tissue (IMAT), and thigh muscle) and the voxel-wise image information.Conclusion The developed and evaluated framework allows accurate image registrations of the collected three single-slice CT images and enables detailed voxel-wise studies of associations between body composition and associated diseases and risk factors.
  •  
5.
  •  
6.
  • Asplund, Teo, et al. (författare)
  • Adaptive Mathematical Morphology on Irregularly Sampled Signals in Two Dimensions
  • 2020
  • Ingår i: Mathematical Morphology : Theory and Applications. - : Walter de Gruyter. - 2353-3390. ; 4:1, s. 108-126
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper proposes a way of better approximating continuous, two-dimensional morphologyin the discrete domain, by allowing for irregularly sampled input and output signals. We generalizeprevious work to allow for a greater variety of structuring elements, both flat and non-flat. Experimentallywe show improved results over regular, discrete morphology with respect to the approximation ofcontinuous morphology. It is also worth noting that the number of output samples can often be reducedwithout sacrificing the quality of the approximation, since the morphological operators usually generateoutput signals with many plateaus, which, intuitively do not need a large number of samples to be correctlyrepresented. Finally, the paper presents some results showing adaptive morphology on irregularlysampled signals.
  •  
7.
  •  
8.
  • Banerjee, Subhashis, et al. (författare)
  • Deep Curriculum Learning for Follow-up MRI Registration in Glioblastoma
  • 2023
  • Ingår i: Medical Imaging 2023. - : SPIE -Society of Photo-Optical Instrumentation Engineers. - 9781510660335 - 9781510660342
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a weakly supervised deep convolutional neural network-based approach to perform voxel-level3D registration between subsequent follow-up MRI scans of the same patient. To handle the large deformation inthe surrounding brain tissues due to the tumor’s mass effect we proposed curriculum learning-based training forthe network. Weak supervision helps the network to concentrate more focus on the tumor region and resectioncavity through a saliency detection network. Qualitative and quantitative experimental results show the proposedregistration network outperformed two popular state-of-the-art methods.
  •  
9.
  • Banerjee, Subhashis, et al. (författare)
  • Lifelong Learning with Dynamic Convolutions for Glioma Segmentation from Multi-Modal MRI
  • 2023
  • Ingår i: Medical imaging 2023. - : SPIE - International Society for Optical Engineering. - 9781510660335 - 9781510660342
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a novel solution for catastrophic forgetting in lifelong learning (LL) using Dynamic Convolution Neural Network (Dy-CNN). The proposed dynamic convolution layer can adapt convolution filters by learning kernel coefficients or weights based on the input image. The suitability of the proposed Dy-CNN in a lifelong sequential learning-based scenario with multi-modal MR images is experimentally demonstrated for the segmentation of Glioma tumors from multi-modal MR images. Experimental results demonstrated the superiority of the Dy-CNN-based segmenting network in terms of learning through multi-modal MRI images and better convergence of lifelong learning-based training.
  •  
10.
  • Banerjee, Subhashis, et al. (författare)
  • Segmentation of Intracranial Aneurysm Remnant in MRA using Dual-Attention Atrous Net
  • 2021
  • Ingår i: 25th International Conference on Pattern Recognition (ICPR). - 9781728188089 ; , s. 9265-9272
  • Konferensbidrag (refereegranskat)abstract
    • Due to the advancement of non-invasive medical imaging modalities like Magnetic Resonance Angiography (MRA), an increasing number of Intracranial Aneurysm (IA) cases are being reported in recent years. The IAs are typically treated by so-called endovascular coiling, where blood flow in the IA is prevented by embolization with a platinum coil. Accurate quantification of the IA Remnant (IAR), i.e. the volume with blood flow present post treatment is the utmost important factor in choosing the right treatment planning. This is typically done by manually segmenting the aneurysm remnant from the MRA volume. Since manual segmentation of volumetric images is a labour-intensive and error-prone process, development of an automatic volumetric segmentation method is required. Segmentation of small structures such as IA, that may largely vary in size, shape, and location is considered extremely difficult. Similar intensity distribution of IAs and surrounding blood vessels makes it more challenging and susceptible to false positive. In this paper we propose a novel 3D CNN architecture called Dual-Attention Atrous Net (DAtt-ANet), which can efficiently segment IAR volumes from MRA images by reconciling features at different scales using the proposed Parallel Atrous Unit (PAU) along with the use of self-attention mechanism for extracting fine-grained features and intra-class correlation. The proposed DAtt-ANet model is trained and evaluated on a clinical MRA image dataset of IAR consisting of 46 subjects. We compared the proposed DAtt-ANet with five state-of-the-art CNN models based on their segmentation performance. The proposed DAtt-ANet outperformed all other methods and was able to achieve a five-fold cross-validation DICE score of 0.73 +/- 0.06.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (14)
doktorsavhandling (4)
annan publikation (1)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Strand, Robin, 1978- (50)
Ahlström, Håkan, 195 ... (26)
Kullberg, Joel, 1979 ... (24)
Malmberg, Filip, 198 ... (10)
Langner, Taro (7)
Lind, Lars (6)
visa fler...
Wikström, Johan, Pro ... (6)
Dhara, Ashis Kumar (5)
Sjöholm, Therese (5)
Ahlström, Håkan (4)
Tarai, Sambit (4)
Lundström, Elin (4)
Kullberg, Joel (4)
Eriksson, Jan W. (3)
Jönsson, Hanna (3)
Ahmad, Nouman (3)
Wikström, Johan, 196 ... (2)
Bergström, Göran, 19 ... (2)
Enblad, Gunilla (2)
Molin, Daniel, 1969- (2)
Pereira, Maria J., 1 ... (2)
Lubberink, Mark (2)
Lindblad, Joakim (2)
Michaëlsson, Karl, 1 ... (2)
Skrtic, Stanko, 1970 (1)
Guglielmo, Priscilla (1)
Nyholm, Tufve (1)
Ekström, Simon (1)
Johansson, Emil (1)
Nguyen, Diem, PhD (1)
Sparresäter, Björn (1)
Dahlberg, Hugo (1)
Guggilla, Rama Krish ... (1)
Ahmad, Shafqat (1)
Fall, Tove, 1979- (1)
Hammar, Ulf (1)
Salihovic, Samira, A ... (1)
Carrasquilla, Germán (1)
Menzel, Uwe (1)
Censin, Jenny C. (1)
Sayols-Baixeras, Ser ... (1)
Mora, Andrés Martíne ... (1)
Katsogiannos, Petros ... (1)
Ahnesjö, Anders, 195 ... (1)
Lind, P. Monica, 195 ... (1)
Lundqvist, Martin H. (1)
Malmberg, Filip (1)
Gustafsson, Fredrik ... (1)
Lindgren, Dag (1)
Andersson, Jonathan (1)
visa färre...
Lärosäte
Uppsala universitet (51)
Göteborgs universitet (3)
Umeå universitet (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
Språk
Engelska (51)
Forskningsämne (UKÄ/SCB)
Teknik (30)
Medicin och hälsovetenskap (30)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy