SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zarrinkoob Laleh) srt2:(2020-2024)"

Sökning: WFRF:(Zarrinkoob Laleh) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birnefeld, Johan, et al. (författare)
  • Cerebral blood flow assessed with phase-contrast magnetic resonance imaging during blood pressure changes with noradrenaline and labetalol : a trial in healthy volunteers 
  • 2024
  • Ingår i: Anesthesiology. - : Wolters Kluwer. - 0003-3022 .- 1528-1175. ; 140:4, s. 669-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adequate cerebral perfusion is central during general anesthesia. However, perfusion is not readily measured bedside. Clinicians currently rely mainly on MAP as a surrogate even though the relationship between blood pressure and cerebral blood flow is not well understood. The aim of this study was to apply phase contrast MRI to characterize blood flow responses in healthy volunteers to commonly used pharmacological agents that increase or decrease arterial blood pressure.Methods: Eighteen healthy volunteers aged 30-50 years were investigated with phase contrast MRI. Intraarterial blood pressure monitoring was used. First, intravenous noradrenaline was administered to a target MAP of 20% above baseline. After a wash-out period, intravenous labetalol was given to a target MAP of 15% below baseline. Cerebral blood flow was measured using phase contrast MRI and defined as the sum of flow in the internal carotid arteries and vertebral arteries. CO was defined as the flow in the ascending aorta.Baseline median cerebral blood flow was 772 ml/min (interquartile range, 674 to 871), and CO was 5,874 ml/min (5,199 to 6,355). The median dose of noradrenaline was 0.17 µg · kg−1 · h−1 (0.14 to 0.22). During noradrenaline infusion, cerebral blood flow decreased to 705 ml/min (606 to 748; P = 0.001), and CO decreased to 4,995 ml/min (4,705 to 5,635; P = 0.01). A median dose of labetalol was 120 mg (118 to 150). After labetalol boluses, cerebral blood flow was unchanged at 769 ml/min (734 to 900; P = 0.68). CO increased to 6,413 ml/min (6,056 to 7,464; P = 0.03).Conclusion: In healthy awake subjects, increasing MAP using intravenous noradrenaline decreased cerebral blood flow and CO. This data does not support inducing hypertension with noradrenaline to increase cerebral blood flow. Cerebral blood flow was unchanged when decreasing MAP using labetalol.
  •  
2.
  • Holmgren, Madelene, et al. (författare)
  • Middle cerebral artery pressure laterality in patients with symptomatic ICA stenosis
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An internal carotid artery (ICA) stenosis can potentially decrease the perfusion pressure to the brain. In this study, computational fluid dynamics (CFD) was used to study if there was a hemispheric pressure laterality between the contra- and ipsilateral middle cerebral artery (MCA) in patients with a symptomatic ICA stenosis. We further investigated if this MCA pressure laterality (ΔPMCA) was related to the hemispheric flow laterality (ΔQ) in the anterior circulation, i.e., ICA, proximal MCA and the proximal anterior cerebral artery (ACA). Twenty-eight patients (73±6 years, range 59–80 years, 21 men) with symptomatic ICA stenosis were included. Flow rates were measured using 4D flow MRI data (PC-VIPR) and vessel geometries were obtained from computed tomography angiography. The ΔPMCA was calculated from CFD, where patient-specific flow rates were applied at all input- and output boundaries. The ΔPMCA between the contra- and ipsilateral side was 6.4±8.3 mmHg (p<0.001) (median 3.9 mmHg, range -1.3 to 31.9 mmHg). There was a linear correlation between the ΔPMCA and ΔQICA (r = 0.85, p<0.001) and ΔQACA (r = 0.71, p<0.001), respectively. The correlation to ΔQMCA was weaker (r = 0.47, p = 0.011). In conclusion, the MCA pressure laterality obtained with CFD, is a promising physiological biomarker that can grade the hemodynamic disturbance in patients with a symptomatic ICA stenosis.
  •  
3.
  • Holmgren, Madelene, et al. (författare)
  • Prediction of cerebral perfusion pressure during carotid surgery : A computational fluid dynamics approach
  • 2022
  • Ingår i: Clinical Biomechanics. - : Elsevier BV. - 0268-0033 .- 1879-1271. ; 100
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Maintaining cerebral perfusion pressure in the brain when a carotid artery is closed during vascular surgery is critical for avoiding intraoperative hypoperfusion and risk of ischemic stroke. Here we propose and evaluate a method based on computational fluid dynamics for predicting patient-specific cerebral perfusion pressures at carotid clamping during carotid endarterectomy.Methods: The study consisted of 22 patients with symptomatic carotid stenosis who underwent carotid endarterectomy (73 ± 5 years, 59–80 years, 17 men). The geometry of the circle of Willis was obtained preoperatively from computed tomography angiography and corresponding flow rates from four-dimensional flow magnetic resonance imaging. The patients were also classified as having a present or absent ipsilateral posterior communicating artery based on computed tomography angiography. The predicted mean stump pressures from computational fluid dynamics were compared with intraoperatively measured stump pressures from carotid endarterectomy.Findings: On group level, there was no difference between the predicted and measured stump pressures (−0.5 ± 13 mmHg, P = 0.86) and the pressures were correlated (r = 0.44, P = 0.039). Omitting two outliers, the correlation increased to r = 0.78 (P < 0.001) (−1.4 ± 8.0 mmHg, P = 0.45). Patients with a present ipsilateral posterior communicating artery (n = 8) had a higher measured stump pressure than those with an absent artery (n = 12) (P < 0.001).Interpretation: The stump pressure agreement indicates that the computational fluid dynamics approach was promising in predicting cerebral perfusion pressures during carotid clamping, which may prove useful in the preoperative planning of vascular interventions.
  •  
4.
  • Johansson, Elias, et al. (författare)
  • Diagnosing carotid near-occlusion with phase-contrast MRI
  • 2021
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 42:5, s. 927-929
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid near-occlusion is a frequently overlooked diagnosis when CTA examinations are assessed in routine practice. To evaluate the potential value of phase-contrast MR imaging in identifying near-occlusion, we examined 9 carotid near-occlusions and 20 cases of conventional $50% carotid stenosis (mean stenosis degree, 65%) with phase-contrast MR imaging. Mean ICA flow was lower in near-occlusions (52 mL/min) than in conventional $50% stenosis (198 mL/min, P, .001). ICA flow of #110 mL/min was 100% sensitive and specific for near-occlusion. Phase-contrast MR imaging is a promising tool for diagnosing carotid near-occlusion.
  •  
5.
  • Malm, Jan, Professor, 1957-, et al. (författare)
  • Hemodynamic Disturbances in Posterior Circulation Stroke : 4D Flow Magnetic Resonance Imaging Added to Computed Tomography Angiography
  • 2021
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: A clinically feasible, non-invasive method to quantify blood flow, hemodynamics, and collateral flow in the vertebrobasilar arterial tree is missing. The objective of this study was to evaluate the feasibility of quantifying blood flow and blood flow patterns using 4D flow magnetic resonance imaging (MRI) in consecutive patients after an ischemic stroke in the posterior circulation. We also explore if 4D-flow, analyzed in conjunction with computed tomography angiography (CTA), has potential as a diagnostic tool in posterior circulation stroke.Methods: Twenty-five patients (mean age 62 years; eight women) with acute ischemic stroke in the posterior circulation were investigated. At admission, all patients were examined with CTA followed by MRI (4D flow MRI and diffusion-weighted sequences) at median 4 days after the presenting event. Based on the classification of Caplan, patients were divided into proximal/middle (n = 16) and distal territory infarcts (n = 9). Absolute and relative blood flow rates were calculated for internal carotid arteries (ICA), vertebral arteries (VA), basilar artery (BA), posterior cerebral arteries (P1 and P2), and the posterior communicating arteries (Pcom). In a control group consisting of healthy elderly, the 90th and 10th percentiles of flow were calculated in order to define normal, increased, or decreased blood flow in each artery. “Major hemodynamic disturbance” was defined as low BA flow and either low P2 flow or high Pcom flow. Various minor hemodynamic disturbances were also defined. Blood flow rates were compared between groups. In addition, a comprehensive analysis of each patient’s blood flow profile was performed by assessing relative blood flow rates in each artery in conjunction with findings from CTA.Results: There was no difference in total cerebral blood flow between patients and controls [604 ± 117 ml/min vs. 587 ± 169 ml/min (mean ± SD), p = 0.39] or in total inflow to the posterior circulation (i.e., the sum of total VA and Pcom flows, 159 ± 63 ml/min vs. 164 ± 52 ml/min, p = 0.98). In individual arteries, there were no significant differences between patients and controls in absolute or relative flow. However, patients had larger interindividual relative flow variance in BA, P1, and P2 (p = 0.01, <0.01, and 0.02, respectively). Out of the 16 patients that had proximal/middle territory infarcts, nine had CTA findings in VA and/or BA generating five with major hemodynamic disturbance identified with 4D flow MRI. For those without CTA findings, seven had no or minor 4D flow MRI hemodynamic disturbance. Among nine patients with distal territory infarcts, one had major hemodynamic disturbances, while the remaining had minor disturbances.Conclusion: 4D flow MRI contributed to the identification of the patients who had major hemodynamic disturbances from the vascular pathologies revealed on CTA. We thus conclude that 4D flow MRI could add valuable hemodynamic information when used in conjunction with CTA.
  •  
6.
  • Vikström, Axel, et al. (författare)
  • Establishing the distribution of cerebrovascular resistance using computational fluid dynamics and 4D flow MRI
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrovascular resistance (CVR) regulates blood flow in the brain, but little is known about the vascular resistances of the individual cerebral territories. We present a method to calculate these resistances and investigate how CVR varies in the hemodynamically disturbed brain. We included 48 patients with stroke/TIA (29 with symptomatic carotid stenosis). By combining flow rate (4D flow MRI) and structural computed tomography angiography (CTA) data with computational fluid dynamics (CFD) we computed the perfusion pressures out from the circle of Willis, with which CVR of the MCA, ACA, and PCA territories was estimated. 56 controls were included for comparison of total CVR (tCVR). CVR were 33.8 ± 10.5, 59.0 ± 30.6, and 77.8 ± 21.3 mmHg s/ml for the MCA, ACA, and PCA territories. We found no differences in tCVR between patients, 9.3 ± 1.9 mmHg s/ml, and controls, 9.3 ± 2.0 mmHg s/ml (p = 0.88), nor in territorial CVR in the carotid stenosis patients between ipsilateral and contralateral hemispheres. Territorial resistance associated inversely to territorial brain volume (p < 0.001). These resistances may work as reference values when modelling blood flow in the circle of Willis, and the method can be used when there is need for subject-specific analysis.
  •  
7.
  • Zarrinkoob, Laleh, 1982-, et al. (författare)
  • Cerebral blood flow patterns in patients with low-flow carotid artery stenosis, a 4D-PCMRI assessment
  • 2024
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Compromised cerebral blood flow can contribute to future ischemic events in patients with symptomatic carotid artery disease. However, there is limited knowledge of the effects on cerebral hemodynamics resulting from a reduced internal carotid artery (ICA) blood flow rate (BFR).Purpose: Investigate how reduced ICA-BFR, relates to BFR in the cerebral arteries.Study Type: Prospective.Subjects: Thirty-eight patients, age 72 ± 6 years (11 female).Field Strength/Sequence: 3-Tesla, four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI).Assessment: Patients with ischemic stroke or transient ischemic attack were evaluated regarding the degree of stenosis. 4D-PCMRI was used to measure cerebral BFR in 38 patients with symptomatic carotid stenosis (≥50%). BFR in the cerebral arteries was assessed in two subgroups based on symptomatic ICA-BFR: reduced ICA-flow (<160 mL/minutes) and preserved ICA-flow (≥160 mL/minutes). BFR laterality was defined as a difference in the paired ipsilateral-contralateral arteries.Statistical Tests: Patients were grouped based on ICA-BFR (reduced vs. preserved). Statistical tests (independent sample t-test/paired t-test) were used to compare groups and hemispheres. Significance was determined at P < 0.05.Results: The degree of stenosis was not significantly different, 80% (95% confidence interval [CI] = 73%–87%) in the reduced ICA-flow vs. 72% (CI = 66%–76%) in the preserved ICA-flow; P = 0.09. In the reduced ICA-flow group, a significantly reduced BFR was found in the ipsilateral middle cerebral artery and anterior cerebral artery (A1), while significantly increased in the contralateral A1. Retrograde BFR was found in the posterior communicating artery and ophthalmic artery. Significant BFR laterality was present in all paired arteries in the reduced ICA-flow group, contrasting the preserved ICA-flow group (P = 0.14–0.93).Data Conclusions: 4D-PCMRI revealed compromised cerebral BFR due to carotid stenosis, not possible to detect by solely analyzing the degree of stenosis. In patients with reduced ICA-flow, collaterals were not sufficient to maintain symmetrical BFR distribution to the two hemispheres.Evidence Level: 2.Technical Efficacy: Stage 3.
  •  
8.
  • Zarrinkoob, Laleh, 1982-, et al. (författare)
  • Quantification and mapping of cerebral hemodynamics before and after carotid endarterectomy, using four-dimensional flow magnetic resonance imaging
  • 2021
  • Ingår i: Journal of Vascular Surgery. - : Elsevier. - 0741-5214 .- 1097-6809. ; 74:3, s. 910-920.e1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: A carotid stenosis can have a profound impact on the cerebral hemodynamics that cannot be inferred from the degree of stenosis by itself. We aimed to quantify and map the distribution of blood flow rate (BFR) in cerebral arteries before and after carotid endarterectomy (CEA), using four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI).Methods: Nineteen patients (71±6 years, 2 women) with symptomatic carotid stenosis (≥50%)undergoing CEA were investigated using 4D PCMRI before and after surgery. BFR was measured in 17 cerebral arteries and in the ophthalmic arteries (OA). Collateral recruitment through the anterior and posterior communicating arteries, OA and the leptomeningeal arterial route was identified and quantified. BFR laterality was described as contralateral BFR minus ipsilateral BFR in paired arteries.Results: Total cerebral blood flow increased by 15% (p<0.01) after CEA. On the ipsilateral side, increased BFR was found after CEA in internal carotid artery (ICA) (246±62mL/min vs. 135±80mL/min; p<0.001), anterior cerebral artery (87±mL/min vs. 38±58mL/min; p<0.01) and middle cerebral artery (MCA) (149±43mL/min vs. 119±34mL/min; p<0.01), resulting in a postoperative BFR distribution without signs of laterality. In patients with preoperatively recruited collaterals (n=9), BFR laterality was found in MCA before, but not after, CEA (p<0.01). This laterality was not found in patients without collateral recruitment (n=10) (p=0.2). The degree of stenosis did not differ between the groups with vs. without collateral recruitment (p=0.85). Conclusion: 4D PCMRI is a useful technique to quantify cerebral hemodynamic changes seen in patients with carotid stenosis before and after CEA. MCA laterality, seen in patients with collateral recruitment before CEA, pointed towards a hemodynamic disturbance in MCA territory for those patients. This study introduces a new and non-invasive way to evaluate cerebral hemodynamics due to carotid stenosis prior to and after CEA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy