SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(af Bjerkén Sara) srt2:(2015-2019)"

Sökning: WFRF:(af Bjerkén Sara) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • af Bjerkén, Sara, et al. (författare)
  • Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance
  • 2019
  • Ingår i: Neurochemistry International. - : Elsevier. - 0197-0186 .- 1872-9754. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
  •  
2.
  • Hashemian, Sanaz, et al. (författare)
  • Embryonic and mature astrocytes exert different effects on neuronal growth in rat ventral mesencephalic slice cultures
  • 2015
  • Ingår i: SpringerPlus. - : Springer Science and Business Media LLC. - 2193-1801. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • One obstacle with grafting of dopamine neurons in Parkinson's disease is the insufficient ability of the transplant to reinnervate the host striatum. Another issue is the prospective interaction between the donor fetal tissue and the adult astrocytes of the host. To study nerve fiber growth and its interaction with immature/mature astrocytes, ventral mesencephalic (VM) organotypic rat tissue cultures from embryonic days (E) 12, E14, and E18 were studied up to 35 days in vitro (DIV), and co-cultures of E14 VM tissue and mature green fluorescent protein (GFP)-positive astrocytes were performed. Generally, nerve fibers grew from the tissue slice either in association with a monolayer of migrated astroglia surrounding the tissue (glial-associated), or distal to the astroglia as non-glial-associated outgrowth. The tyrosine hydroxylase (TH)-positive glial-associated nerve fiber outgrowth reached a plateau at 21 DIV in E12 and E14 cultures. In E18 cultures, TH-positive neurons displayed short processes and migrated onto the astrocytes. While the non-glial-associated nerve fiber outgrowth dominated the E14 cultures, it was found absent in E18 cultures. The GFP-positive cells in the VM and GFP-positive astrocyte co-cultures were generally located distal to the monolayer of migrated fetal astrocytes, a few GFP-positive cells were however observed within the astrocytic monolayer. In those cases TH-positive neurons migrated towards the GFP-positive cells. Both the non-glial-and glial-associated nerve fibers grew onto the GFP-positive cells. Taken together, the glial-associated growth has limited outgrowth compared to the non-glial-associated nerve fibers, while none of the outgrowth types were hampered by the mature astrocytes.
  •  
3.
  • Jakobson Mo, Susanna, et al. (författare)
  • Dopamine transporter imaging with [18F]FE-PE2I PET and [123I]FP-CIT SPECT – a clinical comparison
  • 2018
  • Ingår i: EJNMMI Research. - : Springer. - 2191-219X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dopamine transporter (DAT) imaging may be of diagnostic value in patients with clinically suspected parkinsonian disease. The purpose of this study was to compare the diagnostic performance of DAT imaging with positron emission computed tomography (PET), using the recently developed, highly DAT-selective radiopharmaceutical [18F]FE-PE2I (FE-PE2I), to the commercially available and frequently used method with [123I]FP-CIT (FP-CIT) single-photon emission computed tomography (SPECT) in early-stage idiopathic parkinsonian syndrome (PS).Methods: Twenty-two patients with a clinical de novo diagnosis of PS and 28 healthy controls (HC) participating in an on-going clinical trial of FE-PE2I were analyzed in this study. Within the trial protocol, participants are clinically reassessed 2 years after inclusion. A commercially available software was used for automatic calculation of FP-CIT-specific uptake ratio (SUR). MRI-based volumes of interest combined with threshold PET segmentation were used for FE-PE2I binding potential relative to non-displaceable binding (BPND) quantification and specific uptake value ratios (SUVR).Results: PET with FE-PE2I revealed significant differences between patients with a clinical de novo diagnosis of PS and healthy controls in striatal DAT availability (p < 0.001), with excellent accuracy of predicting dopaminergic deficit in early-stage PS. The effect sizes were calculated for FE-PE2I BPND (Glass’s Δ = 2.95), FE-PE2I SUVR (Glass’s Δ = 2.57), and FP-CIT SUR (Glass’s Δ = 2.29). The intraclass correlation (ICC) between FE-PE2I BPND FP-CIT SUR was high in the caudate (ICC = 0.923), putamen (ICC = 0.922), and striatum (ICC = 0.946), p < 0.001. Five of the 22 patients displayed preserved striatal DAT availability in the striatum with both methods. At follow-up, a non-PS clinical diagnosis was confirmed in three of these, while one was clinically diagnosed with corticobasal syndrome. In these patients, FE-PE2I binding was also normal in the substantia nigra (SN), while significantly reduced in the remaining patients. FE-PE2I measurement of the mean DAT availability in the putamen was strongly correlated with BPND in the SN (R = 0.816, p < 0.001). Olfaction and mean putamen DAT availability was correlated using both FE-PE2I BPND and FP-CIT SUR (R ≥ 0.616, p < 0.001).Conclusion: DAT imaging with FE-PE2I PET yields excellent basic diagnostic differentiation in early-stage PS, at least as good as FP-CIT SPECT.
  •  
4.
  • Kopra, Jaakko J., et al. (författare)
  • Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF
  • 2017
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 37:6, s. 1581-1590
  • Tidskriftsartikel (refereegranskat)abstract
    • Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.
  •  
5.
  • Olmedo-Díaz, Sonia, et al. (författare)
  • An altered blood–brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson's disease
  • 2017
  • Ingår i: Neuroscience. - : Elsevier. - 0306-4522 .- 1873-7544. ; 362, s. 141-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain iron accumulation is a common feature shared by several neurodegenerative disorders including Parkinson's disease. However, what produces this accumulation of iron is still unknown. In this study, the 6-hydroxydopamine (6-OHDA) hemi-parkinsonian rat model was used to investigate abnormal iron accumulation in substantia nigra. We investigated three possible causes of iron accumulation; a compromised blood-brain barrier (BBB), abnormal expression of ferritin, and neuroinflammation. We identified alterations in the BBB subsequent to the injection of 6-OHDA using gadolinium-enhanced magnetic resonance imaging (MRI). Moreover, detection of extravasated IgG suggested that peripheral components are able to enter the brain through a leaky BBB. Presence of iron following dopamine cell degeneration was studied by MRI, which revealed hypointense signals in the substantia nigra. The presence of iron deposits was further validated in histological evaluations. Furthermore, iron inclusions were closely associated with active microglia and with increased levels of L-ferritin indicating a putative role for microglia and L-ferritin in brain iron accumulation and dopamine neurodegeneration.
  •  
6.
  • Virel, Ana, et al. (författare)
  • H-1 NMR profiling of the 6-OHDA parkinsonian rat brain reveals metabolic alterations and signs of recovery after N-acetylcysteine treatment
  • 2019
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier BV. - 1044-7431 .- 1095-9327. ; 98, s. 131-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease is the second most common neurodegenerative disease caused by degeneration of dopamine neurons in the substantia nigra. The origin and causes of dopamine neurodegeneration in Parkinson's disease are not well understood but oxidative stress may play an important role in its onset. Much effort has been dedicated to find biomarkers indicative of oxidative stress and neurodegenerative processes in parkinsonian brains. By using proton nuclear magnetic resonance (H-1 NMR) to identify and quantify key metabolites, it is now possible to elucidate the metabolic pathways affected by pathological conditions like neurodegeneration. The metabolic disturbances in the 6-hydroxydopamine (6-OHDA) hemiparkinsonian rat model were monitored and the nature and size of these metabolic alterations were analyzed. The results indicate that a unilateral injection of 6-OHDA into the striatum causes metabolic changes that not only affect the injected hemisphere but also the contralateral, non-lesioned side. We could clearly identify specific metabolic pathways that were affected, which were mostly related with oxidative stress and neurotransmission. In addition, a partial metabolic recovery by carrying out an antioxidant treatment with N-acetylcysteine (NAC) was observable.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy