SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haberle J) "

Sökning: WFRF:(Haberle J)

  • Resultat 1-25 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Power, M. J., et al. (författare)
  • Changes in fire regimes since the Last Glacial Maximum : an assessment based on a global synthesis and analysis of charcoal data
  • 2008
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 30:7-8, s. 887-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
  •  
2.
  •  
3.
  •  
4.
  • Arvidson, R. E., et al. (författare)
  • Opportunity Mars Rover mission : Overview and selected results from Purgatory ripple to traverses to Endeavour crater
  • 2011
  • Ingår i: Journal of Geophysical Research. - Hoboken : Wiley-Blackwell. - 0148-0227 .- 2156-2202. ; 116, s. E00F15-
  • Tidskriftsartikel (refereegranskat)abstract
    • Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.
  •  
5.
  • Daniau, A. -L, et al. (författare)
  • predictability of biomass burning in response to climate changes
  • 2012
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 26, s. GB4007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo-fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Forrest, ARR, et al. (författare)
  • A promoter-level mammalian expression atlas
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  •  
11.
  •  
12.
  • Conrad, P.G., et al. (författare)
  • Environmental Dynamics and the Habitability Potential at Gale Crater, Mars
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The assessment of environmental habitability potential involves measurement of the chemical and physical attributes of the system as well as their dynamic interplay. The environmental dynamics describe the availability of both energy sources and raw materials for meeting the requirements of organisms and for altering the environment. Energetic exchange can also determine the preservation potential for organic materials in the rock record. During its first year at Gale Crater, the Mars Science Laboratory payload has directly measured the chemistry and physical attributes, e.g., temperature, humidity, radiation, pressure, etc. of the martian atmosphere. Curiosity has also acquired chemical and mineralogical data, both from a wind drift deposit of fines and from two examples of a sedimentary rock formation in a region of Gale Crater called Yellowknife Bay, some 445 meters to the east of Bradbury Landing, where Curiosity initially touched down. These data enabled inferences to be made regarding depositional environment and past habitability potential at Gale Crater. The rock chemistry data reveal signs of aqueous interaction i.e., H2O, OH and H2 and sufficient elemental basis (C, H, O, S and possibly N) for plausible nutrient supply, should Mars have ever had autotrophic prokaryotes to exploit it, and a range of redox conditions tolerable to Earth microbes is indicated by the presence of clay minerals. Curiosity’s observations of the chemical, physical and geologic features of Yellowknife Bay point to a formerly habitable environment.
  •  
13.
  •  
14.
  • Nogué, Sandra, et al. (författare)
  • The human dimension of biodiversity changes on islands
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 372:6541, s. 488-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.
  •  
15.
  •  
16.
  •  
17.
  • Haberle, R. M., et al. (författare)
  • Secular Climate Change on Mars : An Update Using MSL Pressure Data
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (19 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2 Mars years ago were found to be consistent with these loss rates. Here we compare surface pressure data from the MSL mission with that from Viking Lander 2 (VL-2) to determine if the trend continues. We use VL-2 because it is at the same elevation as MSL (-4500 m). However, based on the first 100 sols of data there does not appear to be a significant difference between the dynamically adjusted pressures of the two landers. This result implies one of several possibilities: (1) the cap is not losing mass and the difference between the Viking and Phoenix results is due to uncertainties in the measurements; (2) the cap has lost mass between the Viking and Phoenix missions but it has since gone back to the cap or into the regolith; or (3) that our analysis is flawed. The first possibility is real since post-mission analysis of the Phoenix sensor has shown that there is a 3 (±2) Pa offset in the data and there may also be uncertainties in the Viking data. The loss/gain scenario for the cap seems unlikely since scarps continue retreating, and regolith uptake implies something unique about the past several Mars years. That our analysis is flawed is certainly possible owing to the very different environments of the Viking and MSL landers. MSL is at the bottom of a deep crater in the southern tropics (~5°S), whereas VL-2 is at a high latitude (~48°N) in the northern plains. And in spite of the fact that the two landers are at nearly identical elevations, they are in very different thermal environments (e.g., MSL is warm when VL-2 is cold), which can have a significant affect on pressures. For these reasons, our confidence in the comparison will increase as more MSL data become available. We will report the results up through sol 360 at the meeting.
  •  
18.
  •  
19.
  •  
20.
  • Harri, A.-M., et al. (författare)
  • Mars Science Laboratory relative humidity observations: Initial results
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:9, s. 2132-2147
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers.
  •  
21.
  •  
22.
  • Turney, Chris S M, et al. (författare)
  • Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.
  •  
23.
  • Walentowitz, Anna, et al. (författare)
  • Long-term trajectories of non-native vegetation on islands globally
  • 2023
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 26:5, s. 729-741
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy