SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0267 8357 OR L773:1464 3804 srt2:(2010-2014)"

Sökning: L773:0267 8357 OR L773:1464 3804 > (2010-2014)

  • Resultat 1-25 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Gallo, Valentina, et al. (författare)
  • STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME): An extension of the STROBE statement
  • 2012
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 27:1, s. 17-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and / or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
  •  
9.
  •  
10.
  • Golkar, Siv Österman, et al. (författare)
  • Intracellular deoxyribonucleotide pool imbalance and DNA damage in cells treated with hydroxyurea, an inhibitor of ribonucleotide reductase
  • 2013
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 28:6, s. 653-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Imbalance in the nucleotide pool of mammalian cells has been shown to result in genotoxic damage. The goal of this study was to devise a sensitive, reproducible and simple method for detection of nucleotide pool changes in mammalian cells that could be used for problem-solving activities in drug development, e.g. mechanistic explanation of a positive response in a mammalian in vitro genotoxicity test. The method evaluated in this study is based on ethanol extraction of the total nucleotide pool, heat treatment and filtration, treatment with calf intestine alkaline phosphatase to convert nucleotides to nucleosides and analysis of the nucleosides by high-performance liquid chromatography with ultraviolet detection. The method was applied to measure the intracellular levels of deoxyribonucleotides in mouse lymphoma (ML) L5178Y cells treated with various concentrations of a model compound, hydroxyurea (HU), a ribonucleotide reductase inhibitor. DNA strand breakage and micronuclei formation were assessed in the same experiments. Imbalance of nucleotide pool (i.e. changes in the relative ratios between individual nucleotide pools) in HU-treated ML cells has been observed already at a concentration of 0.01 mmol/l, whereas genotoxic effects became apparent only at higher concentrations of HU (i.e. 0.25 mmol/l and higher) as indicated by formation of DNA strand breaks and micronuclei.
  •  
11.
  • Huhn, Stefanie, et al. (författare)
  • Ancestral susceptibility to colorectal cancer
  • 2012
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 27:2, s. 197-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Every year, approximately 1 million new colorectal cancer (CRC) cases are diagnosed and about half a million people worldwide die due to this cancer. Known differences in CRC incidence rates are mainly attributed to differences in diet and other environmental factors represented, among others, by nutrition-related complex diseases (e.g. obesity and diabetes mellitus type II). Within the last years, it has become evident that environmental risk factors can be complemented by a genetic component when considering the risk of CRC. For example, a number of polymorphisms are known to be associated with an increased risk of obesity and obesity is a risk factor for CRC. Several studies have shown that the 'ancestral-susceptibility model' can be reasonably applied to nutrition-related complex diseases such as obesity. The work in hand shortly discusses whether the ancestral-susceptibility model can also be applied to CRC as a nutrition-related complex disease.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Liljendahl, Tove Sandberg, et al. (författare)
  • Urinary levels of thymine dimer as a biomarker of exposure to ultraviolet radiation in humans during outdoor activities in the summer
  • 2013
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 28:3, s. 249-256
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of skin cancer is rising rapidly in many countries, presumably due to increased leisure time exposure to solar ultraviolet radiation (UVR). UVR causes DNA lesions, such as the thymine dimer (T=T), which have been causatively linked to the development of skin cancer. T=T is clearly detectable in urine and may, thereby, be a potentially valuable biomarker of UVR exposure. The objective of this study was to evaluate the relationship between UVR exposure and urinary levels of T=T in a field study involving outdoor workers. Daily ambient and personal exposure of 52 beach lifeguards and agricultural workers to UVR were determined (employing 656 personal polysulphone dosimeters). In 22 of these subjects, daily urinary T=T levels (120 samples) were measured, the area of skin exposed calculated and associations assessed utilizing mixed statistical models. The average daily UVR dose was approximately 600 J/m(2) (7.7 standard erythemal doses), i.e. about 20% of ambient UVR. T=T levels were correlated to UVR dose, increasing by about 6 fmol/mu mol creatinine for each 100 J/m(2) increase in dose (average of the three preceding days). This is the first demonstration of a relationship between occupational UVR exposure and urinary levels of a biomarker of DNA damage. On a population level, urinary levels of T=T can be used as a biomarker for UVR exposure in the field.
  •  
17.
  •  
18.
  • Naccarati, A., et al. (författare)
  • Mutations and polymorphisms in TP53 gene-an overview on the role in colorectal cancer
  • 2012
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 27:2, s. 211-218
  • Tidskriftsartikel (refereegranskat)abstract
    • A functionally normal TP53 is essential to protect organisms from developing cancer. Somatic mutations in the gene represent one of the highest recurring perturbations in human tumours, including colorectal cancer (CRC). However, the variegated phenotype of wide spectrum of somatic mutations in TP53 and the complexity of the disease prevent a straight interpretation of the mutational analysis in tumours. In addition to the presence of somatic mutations, polymorphic features of the gene may also contribute to alteration of the normal TP53 functioning and variants, mainly in the form of single nucleotide polymorphisms, can be expected to impact susceptibility to sporadic CRC. In the present study, we reviewed the potential role of alterations in the TP53 gene, both somatic mutations and inherited sequence variations, in predisposition to CRC and in the prognosis and response to therapy. The available data from association studies have mostly shown contradictory outcomes. The majority of the studies were based on limited sample sizes and focussed on a limited number of polymorphisms, with main being the rs1042522 (Arg72Pro). Thus far, there is no possible generalisation of the role of TP53 as also a predictor of therapeutic response and prognosis. The effects of TP53, and its abnormalities, on the response of tumours to cytotoxic drugs, radiation and chemoradiation are complex. However, from studies it is emerging that the inherited genetics of TP53 pathway components could be utilised to further define patient populations in their abilities to induce p53 activity in response to either DNA damaging or p53-targeted therapies.
  •  
19.
  •  
20.
  •  
21.
  • Savolainen, Linda, et al. (författare)
  • The XPD subunit of TFIIH is required for transcription-associated but not DNA double-strand break-induced recombination in mammalian cells
  • 2010
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 25:6, s. 623-629
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Mutations in the XPD gene can give rise to three phenotypically distinct disorders: xeroderma pigmentosum (XP),  trichothiodystrophy (TTD) or combined XP and Cockayne syndrome (CS) (XP/CS). The role of XPD in nucleotide excision repair explains the increased risk of skin cancer in XP patients, but not all the clinical phenotypes found in XP/CS or TTD patients. Here, we describe that the XPD defective UV5 cell line is impaired in transcription-associated recombination (TAR), which can be reverted by the introduction of the wild type XPD gene expressed from a vector. UV5 cells are defective in TAR, despite having intact transcription and homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Interestingly, we find reduced spontaneous HR in XPD defective cells, suggesting that transcription underlie a portion of spontaneous HR events. We also report that transcription-coupled repair (TCR) defective CSB cells, have a defect in TAR, but not in DSB-induced HR. However, the TAR defect may be associated with a general transcription defect in CSB deficient cells.  In conclusion, we show a novel role for the XPD protein in TAR, linking TAR with TCR.
  •  
22.
  •  
23.
  • Xun, Wei Wei, et al. (författare)
  • Single-nucleotide polymorphisms (5p15.33, 15q25.1, 6p22.1, 6q27 and 7p15.3) and lung cancer survival in the European Prospective Investigation into Cancer and Nutrition (EPIC).
  • 2011
  • Ingår i: Mutagenesis. - : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 26:5, s. 657-666
  • Tidskriftsartikel (refereegranskat)abstract
    • The single-nucleotide polymorphisms (SNPs) rs402710 (5p15.33), rs16969968 and rs8034191 (15q25.1) have been consistently identified by genome-wide association studies (GWAS) as significant predictors of lung cancer risk, while rs4324798 (6p22.1) was previously found to influence survival time in small-cell lung cancer (SCLC) patients. Using the same population of one of the original GWAS, we investigated whether the selected SNPs and 31 others (also identified in GWAS) influence survival time, assuming an additive model. The effect of each polymorphism on all cause survival was estimated in 1094 lung cancer patients, and lung cancer-specific survival in 763 patients, using Cox regression adjusted for a priori confounders and competing causes of death where appropriate. Overall, after 1558 person-years of post-diagnostic follow-up, 874 deaths occurred from all causes, including 690 from lung cancer. In the lung cancer-specific survival analysis (1102 person-years), only rs7452888 (6q27) and rs2710994 (7p15.3) modified survival, with adjusted hazard ratios of 1.19 (P = 0.009) and 1.32 (P = 0.011) respectively, taking competing risks into account. Some weak associations were identified in subgroup analysis for rs16969968 and rs8034191 (15q25.1) and rs4324798 (6p22.1) and survival in never-smokers, as well as for rs402710 in current smokers and SCLC patients. In conclusion, rs402710 (5p15.33), rs16969968 and rs8034191 (both 15q25.1) and rs4324798 (6p22.1) were found to be unrelated to survival times in this large cohort of lung cancer patients, regardless of whether the cause of death was from lung cancer or not. However, rs7452888 (6q27) was identified as a possible candidate SNP to influence lung cancer survival, while stratified analysis hinted at a possible role for rs8034191, rs16969968 (15q25.1) and rs4324798 (6p22.1) in influencing survival time in lung cancer patients who were never-smokers, based on a small sample.
  •  
24.
  •  
25.
  • Åsgård, Rikard, et al. (författare)
  • Evidence for different mechanisms of action behind the mutagenic effects of 4-NOPD and OPD : the role of DNA damage, oxidative stress and an imbalanced nucleotide pool
  • 2013
  • Ingår i: Mutagenesis. - : Oxford University Press. - 0267-8357 .- 1464-3804. ; 28:6, s. 637-644
  • Tidskriftsartikel (refereegranskat)abstract
    • The mutagenicity of 4-nitro-o-phenylenediamine (4-NOPD) and o-phenylenediamine (OPD) was compared using the Mouse Lymphoma Assay (MLA) with or without metabolic activation (S9). As expected, OPD was found to be a more potent mutagen than 4-NOPD. To evaluate possible mechanisms behind their mutagenic effects, the following end points were also monitored in cells that had been exposed to similar concentrations of the compounds as in the MLA: general DNA damage (using a standard protocol for the Comet assay); oxidative DNA damage (using a modified procedure for the Comet assay in combination with the enzyme hOGG1); reactive oxygen species (ROS; using the CM-H(2)DCFDA assay); and the balance of the nucleotide pool (measured after conversion to the corresponding nucleosides dC, dT, dG and dA using high-performance liquid chromatography). Both compounds increased the level of general DNA damage. Again, OPD was found to be more potent than 4-NOPD (which only increased the level of general DNA damage in the presence of S9). Although less obvious for OPD, both compounds increased the level of oxidative DNA damage. However, an increase in intracellular ROS was only observed in cells exposed to 4-NOPD, both with and without S9 (which in itself induced oxidative stress). Both compounds decreased the concentrations of dA, dT and dC. A striking effect of OPD was the sharp reduction of dA observed already at very low concentration, both with and without S9 (which in itself affected the precursor pool). Taken together, our results indicate that indirect effects on DNA, possibly related to an unbalanced nucleotide pool, mediate the mutagenicity and DNA-damaging effects of 4-NOPD and OPD to a large extent. Although induction of intracellular oxidative stress seems to be a possible mechanism behind the genotoxicity of 4-NOPD, this pathway seems to be of less importance for the more potent mutagen OPD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy