SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Evilevitch Alex) srt2:(2015-2019)"

Sökning: WFRF:(Evilevitch Alex) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bauer, D W, et al. (författare)
  • Exploring the balance between DNA pressure and capsid stability in Herpes and phage.
  • 2015
  • Ingår i: Journal of Virology. - 1098-5514. ; 89:18, s. 9288-9298
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown in both herpesviruses and phages that packaged viral DNA creates a pressure of tens of atmospheres pushing against the interior capsid wall. For the first time, using differential scanning microcalorimetry, we directly measure the energy powering the release of pressurized DNA from the capsid. Furthermore, using a new calorimetric assay to accurately determine the temperature inducing DNA release, we found a direct influence of internal DNA pressure on the stability of the viral particle. We show that the balance of forces between the DNA pressure and capsid strength, required for DNA retention between rounds of infection, is conserved between evolutionarily diverse bacterial viruses (phage λ and P22), as well as a eukaryotic virus, human Herpes Simplex 1 (HSV-1). Our data also suggest that the portal vertex in these viruses is the weakest point in the overall capsid structure and presents the "Achilles' heel" of virus's stability. Comparison between these viral systems shows that viruses with higher DNA packing density (resulting in higher capsid pressure) have inherently stronger capsid structures preventing spontaneous genome release prior to infection. This force balance is of key importance for viral survival and replication. Investigating the ways to disrupt this balance can lead to development of new mutation resistant anti-virals.
  •  
2.
  • Bauer, D W, et al. (författare)
  • Influence of Internal DNA Pressure on Stability and Infectivity of Phage λ.
  • 2015
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 427:20, s. 3189-3200
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses must remain infectious while in harsh extracellular environments. An important aspect of viral particle stability for double-stranded DNA viruses is the energetically unfavorable state of the tightly confined DNA chain within the virus capsid creating pressures of tens of atmospheres. Here, we study the influence of internal genome pressure on the thermal stability of viral particles. Using differential scanning calorimetry to monitor genome loss upon heating, we find that internal pressure destabilizes the virion, resulting in a smaller activation energy barrier to trigger DNA release. These experiments are complemented by plaque assay and electron microscopy measurements to determine the influence of intra-capsid DNA pressure on the rates of viral infectivity loss. At higher temperatures (65-75°C), failure to retain the packaged genome is the dominant mechanism of viral inactivation. Conversely, at lower temperatures (40-55°C), a separate inactivation mechanism dominates, which results in non-infectious particles that still retain their packaged DNA. Most significantly, both mechanisms of infectivity loss are directly influenced by internal DNA pressure, with higher pressure resulting in a more rapid rate of inactivation at all temperatures.
  •  
3.
  • Brandariz-Nuñez, Alberto, et al. (författare)
  • Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection
  • 2019
  • Ingår i: eLife. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Many viruses previously have been shown to have pressurized genomes inside their viral protein shell, termed the capsid. This pressure results from the tight confinement of negatively charged viral nucleic acids inside the capsid. However, the relevance of capsid pressure to viral infection has not been demonstrated. In this work, we show that the internal DNA pressure of tens of atmospheres inside a herpesvirus capsid powers ejection of the viral genome into a host cell nucleus. To our knowledge, this provides the first demonstration of a pressure-dependent mechanism of viral genome penetration into a host nucleus, leading to infection of eukaryotic cells.
  •  
4.
  • Evilevitch, Alex (författare)
  • The mobility of packaged phage genome controls ejection dynamics
  • 2018
  • Ingår i: eLife. - 2050-084X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell decision between lytic and lysogenic infection is strongly influenced by dynamics of DNA injection into a cell from a phage population, as phages compete for limited resources and progeny. However, what controls the timing of viral DNA ejection events was not understood. This in vitro study reveals that DNA ejection dynamics for phages can be synchronized (occurring within seconds) or desynchronized (displaying minutes-long delays in initiation) based on mobility of encapsidated DNA, which in turn is regulated by environmental factors, such as temperature and extra-cellular ionic conditions. This mechano-regulation of ejection dynamics is suggested to influence viral replication where the cell's decision between lytic and latent infection is associated with synchronized or desynchronized delayed ejection events from phage population adsorbed to a cell. Our findings are of significant importance for understanding regulatory mechanisms of latency in phage and Herpesviruses, where encapsidated DNA undergoes a similar mechanical transition.
  •  
5.
  • Freeman, Krista G., et al. (författare)
  • Portal Stability Controls Dynamics of DNA Ejection from Phage
  • 2016
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 120:26, s. 6421-6429
  • Tidskriftsartikel (refereegranskat)abstract
    • Through a unique combination of time-resolved single-molecule (cryo-TEM) and bulk measurements (light scattering and small-angle X-ray scattering), we provide a detailed study of the dynamics of stochastic DNA ejection events from phage λ. We reveal that both binding with the specific phage receptor, LamB, and thermo-mechanical destabilization of the portal vertex on the capsid are required for initiation of ejection of the pressurized λ-DNA from the phage. Specifically, we found that a measurable activation energy barrier for initiation of DNA ejection with LamB present, Ea = (1.2 ± 0.1) × 10-19 J/phage (corresponding to ∼28 kTbody/phage at Tbody = 37 °C), results in 15 times increased rate of ejection event dynamics when the temperature is raised from 15 to 45 °C (7.5 min versus 30 s average lag time for initiation of ejection). This suggests that phages have a double fail-safe mechanism for ejection - in addition to receptor binding, phage must also overcome (through thermal energy and internal DNA pressure) an energy barrier for DNA ejection. This energy barrier ensures that viral genome ejection into cells occurs with high efficiency only when the temperature conditions are favorable for genome replication. At lower suboptimal temperatures, the infectious phage titer is preserved over much longer times, since DNA ejection dynamics is strongly inhibited even in the presence of solubilized receptor or susceptible cells. This work also establishes a light scattering based approach to investigate the influence of external solution conditions, mimicking those of the bacterial cytoplasm, on the stability of the viral capsid portal, which is directly linked to dynamics of virion deactivation.
  •  
6.
  • Li, Dong, et al. (författare)
  • Ionic switch controls the DNA state in phage λ.
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 43:13, s. 6348-6358
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid by changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is 'switched on' at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. These results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy