SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kooijman Ellen) srt2:(2014)"

Sökning: WFRF:(Kooijman Ellen) > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, Rajagopal, et al. (författare)
  • Neoarchean crustal growth by accretionary processes: Evidence from combined zircon–titanite U–Pb isotope studies on granitoid rocks around the Hutti greenstone belt, eastern Dharwar Craton, India
  • 2014
  • Ingår i: Journal of Asian Earth Sciences. - : Elsevier. - 1367-9120 .- 1878-5786. ; 79, s. 72-85
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neoarchean Hutti greenstone belt hosts mesothermal gold deposits and is surrounded by granitoid rocks on all sides. Combined U–Pb dating of zircon and titanite from the granitoid rocks constrains their emplacement history and subsequent geologic evolution. The Golapalli and Yelagatti granodiorites occurring to the north of the Hutti greenstone belt were emplaced at 2569 ± 17 Ma. The Yelagatti granodiorite yielded a younger titanite age of 2530 ± 6 Ma which indicates that it was affected by a post-crystallization thermal event that exceeded the titanite closure temperature. The western granodiorites from Kardikal have identical titanite and zircon ages of 2557 ± 6 Ma and 2559 ± 19 Ma, respectively. The eastern Kavital granodiorites yielded titanite ages of 2547 ± 6 Ma and 2544 ± 24 Ma which are identical to the published U–Pb zircon SHRIMP ages. These ages imply that the granitoid rocks surrounding the Hutti greenstone belt were formed as discrete batholiths within a short span of ca. 40 Ma between 2570 Ma and 2530 Ma ago. They were juxtaposed by horizontal tectonic forces against the supracrustal rocks that had formed in oceanic settings at the end of the Archean. The first phase of gold mineralization coincided with the last phase of granodiorite intrusion in the Hutti area. A metamorphic overprint occurred at ca. 2300 Ma ago that reset the Rb–Sr isotope system in biotites and possibly caused hydrothermal activity and enrichment of Au in the ore lodes. The eastern Dharwar Craton consists of quartz monzodiorite–granodiorite–granite suites of rocks that are younger than the greenstone belts that are older than ~2650 Ma reported from earlier studies. The granitoid magmatism took place between 2650 and 2510 Ma ago indicating accretionary growth of the eastern Dharwar Craton.
  •  
2.
  • Smit, Matthijs, et al. (författare)
  • Early evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry
  • 2014
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 42:12, s. 1047-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining early orogenic processes within the Pamir-Tibet orogen represents a critical step toward constructing a comprehensive model on the tectonic evolution of the region. Here we investigate the timing and cause of prograde metamorphism of Cenozoic metamorphic rocks from the Pamir plateau through Lu-Hf geochronology, U-Pb rutile thermochronology, and garnet thermometry. Regional prograde metamorphism and heating to 750–830 °C, as constrained by thermometry, occurred between 37 and 27 Ma. Prograde growth of garnet first occurred in the South Pamir and spread to the Central Pamir during the following 10 m.y. The early metamorphism is attributed to high mantle heat flow following the ca. 45 Ma break-off of the Indian slab south of the Pamir. Our investigation confirms a long-lived thermal history of the Pamir deep crust before the Miocene, and provides a causal link between break-off, enhanced mantle heat flow, and prograde heating of the subduction hanging wall.
  •  
3.
  • Upadhyay, Dewashish, et al. (författare)
  • Magmatic and metamorphic history of Paleoarchean tonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum craton, eastern India
  • 2014
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 252, s. 180-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Texturally controlled dating of zircon from Paleoarchean tonalite–trondhjemite–granodiorites of the Older Metamorphic Tonalitic Gneisses and the Singhbhum Granite batholith (Phases I, II, and III) from the Singhbhum craton in eastern India reveals a polycyclic evolution of the Archean crust. The granitoid suites were emplaced in two pulses at 3.45–3.44 Ga and 3.35–3.32 Ga. Tonalites and trondhjemites of the Older Metamorphic Tonalitic Gneisses were emplaced at ca. 3.45–3.44 Ga together with Phase III of the Singhbhum Granite pluton while granites belonging to the Older Metamorphic Tonalitic Gneisses were emplaced at ca. 3.35–3.32 together with Phase I and Phase II of the Singhbhum Granite pluton. Both crustal units underwent an early phase of relatively high-grade metamorphism at 3.30–3.28 Ga followed by extensive fluid-induced alteration during low-grade metamorphism at 3.19–3.12 Ga, and 3.02–2.96 Ga. The two units have also been marginally affected at ca. 2.52 Ga and 1.06 Ga by major metamorphic events in the North Singhbhum Mobile Belt and the Singhbhum shear zone at the northern margin of the craton. The zircon grains in granites have inherited cores with ages of ca. 3.61 Ga and 3.46–3.41 Ga and with well-developed oscillatory growth zonation which suggests the granitic magmas were derived by partial melting of an igneous precursor or sedimentary rocks derived from an igneous source. The emplacement of the expansive granitoids belonging to the Older Metamorphic Tonalitic Gneisses and the Singhbhum Granite was synchronous with the amphibolite-facies metamorphism (ca. 3.32 Ga) of older meta-igneous and metasedimentary rocks belonging to the Older Metamorphic Group. Major felsic crust formation in the craton occurred in a narrow time interval between 3.46 and 3.32 Ma with minor contributions of material as old as 3.6 Ga. The complex polycyclic evolution of the Paleoarchean crust in the Singhbhum craton can account for the wide range of often disparate ages obtained using whole rock isochron dating techniques with some of the isochron dates being geologically meaningful while others representing mixing lines or disturbance of the isotopic systems during metamorphism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy