SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Sung Chul) srt2:(2015-2019)"

Sökning: WFRF:(Lee Sung Chul) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Chernomoretz, Ariel, et al. (författare)
  • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report
  • 2016
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities.
  •  
3.
  • Shin, Hyun Young, et al. (författare)
  • Cell Seeding Technology for Microarray-Based Quantitative Human Primary Skeletal Muscle Cell Analysis
  • 2019
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 91:22, s. 14214-14219
  • Tidskriftsartikel (refereegranskat)abstract
    • Pipetting techniques play a crucial role in obtaining reproducible and reliable results, especially when seeding cells on small target areas, such as on microarrays, biochips or microfabricated cell culture systems. For very rare cells, such as human primary skeletal muscle cells (skMCs), manual (freehand) cell seeding techniques invariably result in nonuniform cell spreading and heterogeneous cell densities, giving rise to undesirable variations in myogenesis and differentiation. To prevent such technique-dependent variation, we have designed and fabricated a simple, low-cost pipet guidance device (PGD), and holder that works with hand-held pipettes. This work validates the accuracy and reproducibility of the PGD platform and compares its effectiveness with manual and robotic seeding techniques. The PGD system ensures reproducibility of cell seeding, comparable to that of more expensive robotic dispensing systems, resulting in a high degree of cell uniformity and homogeneous cell densities, while also enabling cell community studies. As compared to freehand pipetting, PGD-assisted seeding of C2C12 mouse myoblasts showed 5.3 times more myotube formation and likewise myotubes derived from PGD-seeded human primary skMCs were 3.6 times thicker and 2.2 times longer. These results show that this novel, yet simple PGD-assisted pipetting technique provides precise cell seeding on small targets, ensuring reproducible and reliable high-throughput cell assays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy