SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miranda Miguel) srt2:(2010-2014)"

Sökning: WFRF:(Miranda Miguel) > (2010-2014)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alonso, Benjamin, et al. (författare)
  • Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains
  • 2013
  • Ingår i: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171 .- 1432-0649. ; 112:1, s. 105-114
  • Tidskriftsartikel (refereegranskat)abstract
    • We have post-compressed 25 fs (Fourier limit) amplified pulses in an argon-filled hollow-core fiber. The output pulses were compressed using a pair of wedges and chirped mirrors down to 4.5 fs (Fourier limit of 4.1 fs), which corresponds to less than two optical cycles. We then performed the characterization of the pulses by combining the d-scan and the STARFISH techniques. The temporal (and spectral) measurement of the pulses is done with d-scan, which is used as the reference to extend the characterization to the spatiotemporal (and spatiospectral) amplitude and phase of the pulses by means of STARFISH. The post-compressed pulses at the output of the hollow-fiber had an energy of 150 mu J. The analysis of the pulses revealed larger spectral broadening and blue-shift, and shorter duration at the center of the beam. For the first time, we demonstrate the complete characterization of intense ultra-broadband pulses in the sub-two-cycle regime, which provides an improved insight into the properties (space-time and space-frequency) of the pulses and is highly relevant for their applications.
  •  
3.
  • Best, Mairi, et al. (författare)
  • EMSO: A distributed infrastructure for addressing geohazards and global ocean change
  • 2014
  • Ingår i: Oceanography. - : The Oceanography Society. - 1042-8275. ; 27:2, s. 167-169
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Multidisciplinary Seafloor and water-column Observatory (EMSO; http://www.emso-eu.org) is addressing the next challenge in Earth-ocean science: how to coordinate data acquisition, analysis, archiving, access, and response to geohazards across provincial, national, regional, and international boundaries. Such coordination is needed to optimize the use of current and planned ocean observatory systems to (1) address national and regional public safety concerns about geohazards (e.g., earthquakes, submarine landslides, tsunamis) and (2) permit broadening of their scope toward monitoring environmental change on global ocean scales.
  •  
4.
  • Boehle, Frederik, et al. (författare)
  • Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers
  • 2014
  • Ingår i: Laser Physics Letters. - : IOP Publishing. - 1612-2011 .- 1612-202X. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Carrier-envelope phase stable 4 fs near-IR pulses with 3 mJ energy were generated by spectral broadening of circularly polarized 8 mJ pulses in a differentially pumped 2 m long composite stretched flexible hollow fiber. The pulses were characterized using both second-harmonic generation frequency-resolved optical gating (SHG-FROG) and SHG d-scan methods.
  •  
5.
  • Diogenes, Maria Jose, et al. (författare)
  • Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation
  • 2012
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 32:34, s. 11750-11762
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of alpha-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.
  •  
6.
  • Fordell, Thomas, et al. (författare)
  • High-speed carrier-envelope phase drift detection of amplified laser pulses
  • 2011
  • Ingår i: Optics Express. - 1094-4087. ; 19:24, s. 23652-23657
  • Tidskriftsartikel (refereegranskat)abstract
    • An instrument for measuring carrier-envelope phase (CEP) drift of amplified femtosecond laser pulses at repetition rates up to the 100-kHz regime is presented. The device can be used for real-time pulse labeling and it could also enable single-loop CEP control of future high-repetition rate laser amplifiers. The scheme is demonstrated by measuring the CEP drift of a 1-kHz source. (C) 2011 Optical Society of America
  •  
7.
  • Guenot, Diego, et al. (författare)
  • Photoemission time delay measurements and calculations close to the 3s ionization cross section minimum in ar
  • 2012
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 85:5, s. 053424-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present experimental measurements and theoretical calculations of photoionization time delays from the 3s and 3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random-phase approximation with exchange. The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results, especially in the region where strong intershell correlations in the 3s -> kp channel lead to an induced Cooper minimum in the 3s ionization cross section.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Kroon, David, et al. (författare)
  • Attosecond pulse walk-off in high-order harmonic generation
  • 2014
  • Ingår i: Optics Letters. - 0146-9592. ; 39:7, s. 2218-2221
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the influence of the generation conditions on the group delay of attosecond pulses in high-order harmonic generation in gases. The group delay relative to the fundamental field is found to decrease with increasing gas pressure in the generation cell, reflecting a temporal walk-off due to the dispersive properties of the nonlinear medium. This effect is well reproduced using an on-axis phase-matching model of high-order harmonic generation in an absorbing gas. (C) 2014 Optical Society of America
  •  
12.
  • Matyschok, Jan, et al. (författare)
  • Compact, high-repetition-rate OPCPA system for high harmonic generation
  • 2014
  • Ingår i: Frontiers in Ultrafast Optics : Biomedical, Scientific, and Industrial Applications XIV - Biomedical, Scientific, and Industrial Applications XIV. - : SPIE. - 9780819498854 ; 8972
  • Konferensbidrag (refereegranskat)abstract
    • A compact, high-repetition rate optical parametric chirped pulse amplifier system emitting CEP-stable, few-cycle pulses with 10 μJ of pulse energy is reported for the purpose of high-order harmonic generation. The system is seeded from a commercially available, CEP-stabilized Ti:sapphire oscillator, delivering an octave-spanning spectrum from 600-1200 nm. The oscillator output serves on the one hand as broadband signal for the parametric amplification process and on the other hand as narrowband seed for an Ytterbium-based fiber preamplifier with subsequent main amplifiers and frequency doubling. Broadband parametric amplification up to 17 μJ at 200 kHz repetition rate was achieved in two 5 mm BBO crystals using non-collinear phase matching in the Poynting-vector-walk-off geometry. Efficient pulse compression down to 6.3 fs is achieved with chirped mirrors leading to a peak power exceeding 800 MW. We observed after warm-up time a stability of < 0.5 % rms over 100 min. Drifts of the CE-phase in the parametric amplifier part could be compensated by a slow feedback to the set point of the oscillator phase lock. The CEP stability was measured to be better than 80 mrad over 15 min (3 ms integration time). The experimentally observed output spectra and energies could be well reproduced by simulations of the parametric amplification process based on a (2+1)-dimensional nonlinear propagation code, providing important insight for future repetition rate scaling of OPCPA systems. The system is well-suited for attosecond science experiments which benefit from the high repetition rate. First results for high-order harmonic generation in argon will be presented.
  •  
13.
  • Miranda, Miguel, et al. (författare)
  • Characterization of broadband few-cycle laser pulses with the d-scan technique
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:17, s. 18732-18743
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis and demonstration of few-cycle ultrashort laser pulse characterization using second-harmonic dispersion scans and numerical phase retrieval algorithms. The sensitivity and robustness of this technique with respect to noise, measurement bandwidth and complexity of the measured pulses is discussed through numerical examples and experimental results. Using this technique, we successfully demonstrate the characterization of few-cycle pulses with complex and structured spectra generated from a broadband ultrafast laser oscillator and a high-energy hollow fiber compressor. (C)2012 Optical Society of America
  •  
14.
  • Miranda, Miguel, et al. (författare)
  • Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:1, s. 688-697
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a simple and robust technique to retrieve the phase of ultrashort laser pulses, based on a chirped mirror and glass wedges compressor. It uses the compression system itself as a diagnostic tool, thereby making unnecessary the use of complementary diagnostic tools. We used this technique to compress and characterize 7.1 fs laser pulses from an ultrafast laser oscillator. (C)2011 Optical Society of America
  •  
15.
  • Miranda, Miguel (författare)
  • Sources and Diagnostics for Attosecond Science
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ultrafast science refers to physical events that happen on the femtosecond (1 fs=10^-15 s) and attosecond (1 as=10^-18 s) timescales. Generation of attosecond pulses is usually achieved by interacting high-intensity femtosecond pulses with matter (typically gases), in a process called high-order harmonic generation (HHG). Under the correct conditions, this process leads to the creation of sub-fs pulses in the extreme ultraviolet (XUV) region. The work presented in this thesis focuses around generating, characterizing, and applying ultrashort light pulses, both in the femtosecond and attosecond domain. The first part describes the effort on the femtosecond laser sources, with emphasis on carrier-envelope phase (CEP) stability and control, and temporal and spatial characterization. An existing high-power (30 fs, 6 mJ) laser system was successfully CEP-stabilized, using an acousto-optic programmable dispersive filter (AOPDF) for CEP control. CEP detection at kilohertz rates is also demonstrated. A method for the characterization of ultrashort laser pulses, based on a glass wedges and chirped mirror compressor, has been developed and demonstrated on pulses in the few-cycle regime. This technique, together with spectral interferometry, has been used to characterize in space and time femtosecond laser pulses, in the optical / near-infrared domain. The second part deals with the HHG sources and applications. The spatial coherence of one of the HHG sources, together with its high photon flux, has allowed us to perform single-shot holography in the extreme ultraviolet (XUV) domain. Another HHG source, with lower power but higher repetition rate, was used for the characterization of properties of argon and helium atoms. For this, a technique typically used for the temporal characterization of attosecond pulse trains, RABBITT (reconstruction of attosecond beating by interfering two-photon transitions) was used, allowing us to study the phase of a resonant two-photon ionization in helium, and to measure photoemission delays in argon.
  •  
16.
  • Miranda, Miguel, et al. (författare)
  • Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry
  • 2014
  • Ingår i: Optics Letters. - 0146-9592. ; 39:17, s. 5142-5145
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for characterizing ultrashort laser pulses in space and time, based on spatially resolved Fourier transform spectrometry. An unknown pulse is interfered with a delayed, spatially uniform reference on a CCD camera. The reference pulse is created by spatially filtering a portion of the unknown pulse. By scanning the delay between the two pulses, an interferogram is obtained at each pixel, allowing us to determine the spatially resolved phase difference between the unknown pulse and the reference pulse. High-resolution spatiotemporal characterization of an ultrashort pulse is demonstrated, and the sensitivity of the method to spatiotemporal coupling is shown for the case of a pulse with pulse front tilt. (C) 2014 Optical Society of America
  •  
17.
  •  
18.
  • Miranda, Miguel, et al. (författare)
  • Ultrashort laser pulse characterization from dispersion scans : A comparison with SPIDER
  • 2013
  • Ingår i: 2013 Conference on Lasers and Electro-Optics, CLEO 2013. - 9781557529725 - 9781557529732
  • Konferensbidrag (refereegranskat)abstract
    • We investigate the performance of the recently introduced 'd-scan' technique for the characterization of ultrashort laser pulses by comparing it with a well-established technique (SPIDER). Good agreement is obtained from the two different measurements.
  •  
19.
  • Mårsell, Erik, et al. (författare)
  • Secondary electron imaging of nanostructures using Extreme Ultra-Violet attosecond pulse trains and Infra-Red femtosecond pulses
  • 2013
  • Ingår i: Annalen der Physik. - : Wiley. - 0003-3804. ; 525:1-2, s. 162-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface electron dynamics unfold at time and length scales down to attoseconds and nanometres, making direct imaging with extreme spatiotemporal resolution highly desirable. However, this has turned out to be a major challenge even with the advent of reliable attosecond light sources. In this paper, photoelectrons from Ag nanowires and nanoparticles excited by extreme ultraviolet (XUV) attosecond pulse trains and infrared femtosecond pulses using a PhotoEmission Electron Microscope (PEEM) are imaged. In addition, the samples were investigated using Scanning Electron Microscopy (SEM) and synchrotron based X-ray photoelectron spectroscopy (XPS). To achieve contrast between the nanostructures and the substrate in the XUV images, three different substrate materials were investigated: Cr, ITO and Au. While plasmonic field enhancement can be observed on all three substrates, only on Au substrates do the Ag nanowires appear significantly brighter than the substrate in XUV-PEEM imaging. 3-photon photoemission imaging of plasmonic hot-spots was performed where the autocorrelation trace is observed in the interference signal between two femtosecond Infra-Red (IR) beams with sub-cycle precision. Finally, using Monte Carlo simulations, it is shown how the secondary electrons imaged in the XUV PEEM can potentially reveal information on the attosecond time scale from the near surface region of the nanostructures.
  •  
20.
  • Neidel, Ch, et al. (författare)
  • Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale
  • 2013
  • Ingår i: Physical Review Letters. - 1079-7114. ; 111:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small-and medium-sized neutral molecules (N-2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.
  •  
21.
  • Ruhl, Henry A., et al. (författare)
  • Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas
  • 2011
  • Ingår i: Progress In Oceanography. ; 91:1, s. 1-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
  •  
22.
  • Silva, Francisco, et al. (författare)
  • Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup
  • 2014
  • Ingår i: Optics Express. - 1094-4087. ; 22:9, s. 10181-10190
  • Tidskriftsartikel (refereegranskat)abstract
    • We have temporally characterized, dispersion compensated and carrier-envelope phase stabilized 1.4-cycle pulses (3.2 fs) with 160 mu J of energy at 722 nm using a minimal and convenient dispersion-scan setup. The setup is all inline, does not require interferometric beamsplitting, and uses components available in most laser laboratories. Broadband minimization of third-order dispersion using propagation in water enabled reducing the compressed pulse duration from 3.8 to 3.2 fs with the same set of chirped mirrors. Carrier-envelope phase stabilization of the octave-spanning pulses was also performed by the dispersion-scan setup. This unprecedentedly simple and reliable approach provides reproducible CEP-stabilized pulses in the single-cycle regime for applications such as CEP-sensitive spectroscopy and isolated attosecond pulse generation. (C)2014 Optical Society of America
  •  
23.
  • Soffitta, Paolo, et al. (författare)
  • XIPE : the X-ray imaging polarimetry explorer
  • 2013
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 36:3, s. 523-567
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 10(5) s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin x 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mu s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
  •  
24.
  • Swoboda, Marko, et al. (författare)
  • Phase Measurement of Resonant Two-Photon Ionization in Helium
  • 2010
  • Ingår i: Physical Review Letters. - 1079-7114. ; 104:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We study resonant two-color two-photon ionization of helium via the 1s3p P-1(1) state. The first color is the 15th harmonic of a tunable Ti:sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked high-order harmonics to determine the phase of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy