SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pierbattista M.) srt2:(2012)"

Sökning: WFRF:(Pierbattista M.) > (2012)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nolan, P. L., et al. (författare)
  • Fermi large area telescope second source catalog
  • 2012
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:2, s. 31-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.
  •  
2.
  • Ackermann, M., et al. (författare)
  • MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 751:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The blazarAO 0235+164 (z=0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to gamma-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the gamma-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R-g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
  •  
3.
  • Ackermann, M., et al. (författare)
  • A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 753:1, s. 83-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of gamma-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit gamma rays, 630 of these sources are unassociated (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source classifications appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to probable source classes for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in similar to 80% of the sources.
  •  
4.
  • Ackermann, M., et al. (författare)
  • Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope
  • 2012
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 108:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeVare consistent with a fraction that is continuing to rise with energy.
  •  
5.
  • Ackermann, M., et al. (författare)
  • Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 335:6065, s. 189-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
  •  
6.
  • Ackermann, M., et al. (författare)
  • The fermi large area telescope on orbit : Event classification, instrument response functions, and calibration
  • 2012
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:1, s. 4-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20MeV to more than 300GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.
  •  
7.
  • Ackermann, M., et al. (författare)
  • Constraints on the galactic halo dark matter from fermi-lat diffuse measurements
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 761:2, s. 91-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e(+)/e(-) produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.
  •  
8.
  • Ackermann, M., et al. (författare)
  • GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 755:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values less than or similar to 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L0.1-100GeV/L-1.4GHz) = 1.7 +/- 0.1((statistical)) +/- 0.2((dispersion)) and log(L0.1-100GeV/L8-1000 (mu m)) = -4.3 +/- 0.1((statistical)) +/- 0.2((dispersion)) for a galaxy with a star formation rate of 1 M-circle dot yr(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10(-6) ph cm(-2) s(-1) sr(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that similar to 10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
  •  
9.
  • Ackermann, M., et al. (författare)
  • Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 85:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes vertical bar b vertical bar > 30 degrees in four energy bins spanning 1-50 GeV. At multipoles l >= 155, corresponding to angular scales less than or similar to 2 degrees, angular power above the photon noise level is detected at >99.99% confidence level in the 1-2 GeV, 2-5 GeV, and 5-10 GeV energy bins, and at >99% confidence level at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C-P/< I >(2) 9.05 +/- 0.84 x 10(-6) sr, while the energy dependence of C-P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma(s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.
  •  
10.
  • Abdo, A. A., et al. (författare)
  • Fermi Observations of γ-Ray Emission from the Moon
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 758:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection of high-energy gamma-ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmic-ray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(> 100 MeV) = (1.04 +/- 0.01 [statistical error] +/- 0.1 [systematic error]) x 10(-6) cm(-2) s(-1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on boardthe Compton Gamma Ray Observatory, F(> 100 MeV) approximate to 5 x 10(-7) cm-2 s-1, when solar activity was relatively high. The higher gamma-ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across thesky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis ofthe lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.
  •  
11.
  • Ackermann, M., et al. (författare)
  • Fermi Detection of γ-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:2, s. 144-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Geostationary Operational Environmental Satellite (GOES) M2-class solar flare, SOL2010-06-12T00: 57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an similar to 50 s impulsive burst of hard X-and gamma-ray emission up to at least 400 MeV observed by the Fermi Gamma-ray Burst Monitor and Large Area Telescope experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or similar to 300 MeV with a delay of similar to 10 s from mildly relativistic electrons, but some reached these energies in as little as similar to 3 s. The gamma-ray line fluence from this flare was about 10 times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma-rays.
  •  
12.
  • Ackermann, M., et al. (författare)
  • FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 755:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an analysis of the interstellar gamma-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within similar to 300 pc from the solar system. The gamma-ray emission produced by interactions of cosmic rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained gamma-ray emissivities above 250 MeV are (5.9 +/- 0.1(stat-1.0sys)(+0.9)) x 10(-27) photons s(-1) sr(-1) H-atom(-1), (10.2 +/- 0.4(stat-1.7sys)(+1.2)) x 10(-27) photons s(-1) sr(-1) H-atom(-1), and (9.1 +/- 0.3(stat-0.6sys)(+1.5)) x 10(-27) photons s(-1) sr(-1) H-atom(-1) for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by similar to 20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, X-CO = N(H-2)/W-CO, is found to be (0.96 +/- 0.06(stat-0.12sys)(+0.15)) x 10(20) H-2-molecule cm(-2) (K km s(-1))(-1), (0.99 +/- 0.08(stat-0.10sys)(+0.18)) x 10(20) H-2-molecule cm(-2) (K km s(-1))(-1), and (0.63 +/- 0.02(stat-0.07sys)(+0.09)) x 10(20) H-2-molecule cm(-2) (K km s(-1))(-1) for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of X-CO in the vicinity of the solar system. From the obtained values of X-CO, the masses of molecular gas traced by W-CO in the Chamaeleon, R CrA, and Cepheus and Polaris flare regions are estimated to be similar to 5 x 10(3)M(circle dot), similar to 10(3)M(circle dot), and similar to 3.3 x 10(4)M(circle dot), respectively. A comparable amount of gas not traced well by standard Hi and CO surveys is found in the regions investigated.
  •  
13.
  • Ackermann, M., et al. (författare)
  • Gamma-ray observations of the orion molecular clouds with the fermi large area telescope
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 756:1, s. 4-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between similar to 100 MeV and similar to 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to similar to 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W-CO) at a 1 degrees x 1 degrees pixel level. The correlation is found to be linear over a W-CO range of similar to 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W-CO-to-mass conversion factor, X-CO, is found to be similar to 2.3 x 10(20) cm(-2) (K km s(-1))(-1) for the high-longitude part of Orion A (l > 212 degrees), similar to 1.7 times higher than similar to 1.3 x 10(20) found for the rest of Orion A and B. We interpret the apparent high XCO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H-2 and CO densities in the diffuse molecular gas. W-CO decreases faster than the H-2 column density in the region making the gas "darker" to W-CO.
  •  
14.
  • Ackermann, M., et al. (författare)
  • SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 747:2, s. 104-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a systematic investigation of the gamma-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as radio-quiet objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV >= 2.5 x 10(-11) erg cm(-2) s(-1) at high Galactic latitudes (|b| > 10 degrees). In order to remove radio-loud objects from the sample, we use the hard X-ray radio loudness parameter, RrX, defined as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10(-4), we did not find a statistically significant g-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level gamma-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is similar or equal to 4 x 10(-9) photons cm(-2) s(-1), and the upper limits derived for several objects reach similar or equal to 1 x 10(-9) photons cm(-2) s(-1). Our results indicate that no prominent gamma-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of gamma-ray to X-ray luminosities L-gamma/L-X < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of radio-quiet Seyfert galaxies.
  •  
15.
  • Ajello, M., et al. (författare)
  • Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT
  • 2012
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2, s. 012-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to gamma gamma should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.
  •  
16.
  • Ackermann, M., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION : IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:1, s. 3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray sky >100MeVis dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse gamma-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X-CO factor, the ratio between integrated CO-line intensity and H-2 column density, the fluxes and spectra of the gamma-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as gamma-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.
  •  
17.
  • Ackermann, M., et al. (författare)
  • The cosmic-ray and gas content of the Cygnus region as measured in gamma-rays by the Fermi Large Area Telescope
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538, s. A71-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Cygnus region hosts a giant molecular-cloud complex that actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at gamma-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyze the gamma-ray emission measured by the Fermi Large Area Telescope (LAT) in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content on the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is greatly reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. A general model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral HI emissivity above 100 MeV averaged over the whole Cygnus complex amounts to [2.06 +/- 0.11 (stat.) (+0.15)(-0.84) (syst.)] x 10(-26) photons s(-1) sr(-1) H-atom(-1), where the systematic error is dominated by the uncertainty on the HI opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X-CO = N(H-2)/W-CO ratio is found to be [1.68 +/- 0.05 (stat.) (+0.87)(-0.10) (H I opacity)] x 10(20) molecules cm(-2) (K km s(-1))(-1), consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to similar to 40% of what is traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8 (+5)(-1) x 10(6) M-circle dot at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and high masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.
  •  
18.
  • Ackermann, M., et al. (författare)
  • In-flight measurement of the absolute energy scale of the Fermi Large Area Telescope
  • 2012
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:6, s. 346-353
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between ∌6 and ∌13 GeV with an estimated uncertainty of ∌2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.
  •  
19.
  • Ackermann, M., et al. (författare)
  • SEARCH FOR DARK MATTER SATELLITES USING FERMI-LAT
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 747:2, s. 121-
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the b (b) over bar channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b (b) over bar channel.
  •  
20.
  • Ajello, M., et al. (författare)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 744:1, s. 80-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of pi(0)s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy