SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sewe Maquins Odhiambo) srt2:(2017)"

Sökning: WFRF:(Sewe Maquins Odhiambo) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bunker, Aditi, et al. (författare)
  • Excess burden of non-communicable disease years of life lost from heat in rural Burkina Faso : a time series analysis of the years 2000-2010
  • 2017
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Investigate the association of heat exposure on years of life lost (YLL) from non-communicable diseases (NCD) in Nouna, Burkina Faso, between 2000 and 2010.Design: Daily time series regression analysis using distributed lag non-linear models, assuming a quasi-Poisson distribution of YLL.Setting: Nouna Health and Demographic Surveillance System, Kossi Province, Rural Burkina Faso.Participants: 18 367 NCD-YLL corresponding to 790 NCD deaths recorded in the Nouna Health and Demographic Surveillance Site register over 11 years.Main outcome measure: Excess mean daily NCD-YLL were generated from the relative risk of maximum daily temperature on NCD-YLL, including effects delayed up to 14 days.Results: Daily average NCD-YLL were 4.6, 2.4 and 2.1 person-years for all ages, men and women, respectively. Moderate 4-day cumulative rise in maximum temperature from 36.4 degrees C (50th percentile) to 41.4 degrees C (90th percentile) resulted in 4.44 (95% CI 0.24 to 12.28) excess daily NCDYLL for all ages, rising to 7.39 (95% CI 0.32 to 24.62) at extreme temperature (42.8 degrees C; 99th percentile). The strongest health effects manifested on the day of heat exposure (lag 0), where 0.81 (95% CI 0.13 to 1.59) excess mean NCD-YLL occurred daily at 41.7 degrees C compared with 36.4 degrees C, diminishing in statistical significance after 4 days. At lag 0, daily excess mean NCD-YLL were higher for men, 0.58 (95% CI 0.11 to 1.15) compared with women, 0.15 (95% CI -0.25 to 9.63) at 41.7 degrees C vs 36.4 degrees C.Conclusion: Premature death from NCD was elevated significantly with moderate and extreme heat exposure. These findings have important implications for developing adaptation and mitigation strategies to reduce ambient heat exposure and preventive measures for limiting NCD in Africa.
  •  
2.
  •  
3.
  • Sewe, Maquins Odhiambo, 1981- (författare)
  • Towards Climate Based Early Warning and Response Systems for Malaria
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Great strides have been made in combating malaria, however, the indicators in sub Saharan Africa still do not show promise for elimination in the near future as malaria infections still result in high morbidity and mortality among children. The abundance of the malaria-transmitting mosquito vectors in these regions are driven by climate suitability. In order to achieve malaria elimination by 2030, strengthening of surveillance systems have been advocated. Based on malaria surveillance and climate monitoring, forecasting models may be developed for early warnings. Therefore, in this thesis, we strived to illustrate the use malaria surveillance and climate data for policy and decision making by assessing the association between weather variability (from ground and remote sensing sources) and malaria mortality, and by building malaria admission forecasting models. We further propose an economic framework for integrating forecasts into operational surveillance system for evidence based decisionmaking and resource allocation. Methods: The studies were based in Asembo, Gem and Karemo areas of the KEMRI/CDC Health and Demographic Surveillance System in Western Kenya. Lagged association of rainfall and temperature with malaria mortality was modeled using general additive models, while distributed lag non-linear models were used to explore relationship between remote sensing variables, land surface temperature(LST), normalized difference vegetation index(NDVI) and rainfall on weekly malaria mortality. General additive models, with and without boosting, were used to develop malaria admissions forecasting models for lead times one to three months. We developed a framework for incorporating forecast output into economic evaluation of response strategies at different lead times including uncertainties. The forecast output could either be an alert based on a threshold, or absolute predicted cases. In both situations, interventions at each lead time could be evaluated by the derived net benefit function and uncertainty incorporated by simulation. Results: We found that the environmental factors correlated with malaria mortality with varying latencies. In the first paper, where we used ground weather data, the effect of mean temperature was significant from lag of 9 weeks, with risks higher for mean temperatures above 250C. The effect of cumulative precipitation was delayed and began from 5 weeks. Weekly total rainfall of more than 120 mm resulted in increased risk for mortality. In the second paper, using remotely sensed data, the effect of precipitation was consistent in the three areas, with increasing effect with weekly total rainfall of over 40 mm, and then declined at 80 mm of weekly rainfall. NDVI below 0.4 increased the risk of malaria mortality, while day LST above 350C increased the risk of malaria mortality with shorter lags for high LST weeks. The lag effect of precipitation was more delayed for precipitation values below 20 mm starting at week 5 while shorter lag effect for higher precipitation weeks. The effect of higher NDVI values above 0.4 were more delayed and protective while shorter lag effect for NDVI below 0.4. For all the lead times, in the malaria admissions forecasting modelling in the third paper, the boosted regression models provided better prediction accuracy. The economic framework in the fourth paper presented a probability function of the net benefit of response measures, where the best response at particular lead time corresponded to the one with the highest probability, and absolute value, of a net benefit surplus. Conclusion: We have shown that lagged relationship between environmental variables and malaria health outcomes follow the expected biological mechanism, where presentation of cases follow the onset of specific weather conditions and climate variability. This relationship guided the development of predictive models showcased with the malaria admissions model. Further, we developed an economic framework connecting the forecasts to response measures in situations with considerable uncertainties. Thus, the thesis work has contributed to several important components of early warning systems including risk assessment; utilizing surveillance data for prediction; and a method to identifying cost-effective response strategies. We recommend economic evaluation becomes standard in implementation of early warning system to guide long-term sustainability of such health protection programs.
  •  
4.
  • Sewe, Maquins Odhiambo, et al. (författare)
  • Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Malaria surveillance data provide opportunity to develop forecasting models. Seasonal variability in environmental factors correlate with malaria transmission, thus the identification of transmission patterns is useful in developing prediction models. However, with changing seasonal transmission patterns, either due to interventions or shifting weather seasons, traditional modelling approaches may not yield adequate predictive skill. Two statistical models, a general additive model (GAM) and GAMBOOST model with boosted regression were contrasted by assessing their predictive accuracy in forecasting malaria admissions at lead times of one to three months. Monthly admission data for children under five years with confirmed malaria at the Siaya district hospital in Western Kenya for the period 2003 to 2013 were used together with satellite derived data on rainfall, average temperature and evapotranspiration(ET). There was a total of 8,476 confirmed malaria admissions. The peak of malaria season changed and malaria admissions reduced overtime. The GAMBOOST model at 1-month lead time had the highest predictive skill during both the training and test periods and thus can be utilized in a malaria early warning system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy