SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Twelkmeyer Brigitte) srt2:(2012)"

Sökning: WFRF:(Twelkmeyer Brigitte) > (2012)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar Kondadi, Pradeep, et al. (författare)
  • Identification and Characterization of a Lipopolysaccharide alpha,2,3-Sialyltransferase from the Human Pathogen Helicobacter bizzozeronii
  • 2012
  • Ingår i: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 194:10, s. 2540-2550
  • Tidskriftsartikel (refereegranskat)abstract
    • Terminal sialic acid in the lipopolysaccharides (LPSs) of mucosal pathogens is an important virulence factor. Here we report the characterization of a Helicobacter sialyltransferase involved in the biosynthesis of sialylated LPS in Helicobacter bizzozeronii, the only non-pylori gastric Helicobacter species isolated from humans thus far. Starting from the genome sequences of canine and human strains, we identified potential sialyltransferases downstream of three genes involved in the biosynthesis of N-acetylneuraminic acid. One of these candidates showed monofunctional alpha,2,3-sialyltransferase activity with a preference for N-acetyllactosamine as a substrate. The LPSs from different strains were shown by SDS-PAGE and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) to contain sialic acid after neuraminidase treatment. The expression of this sialyltransferase and sialyl-LPS appeared to be a phase-variable characteristic common to both human and canine H. bizzozeronii strains. The sialylation site of the LPSs of two H. bizzozeronii strains was determined to be NeuAc-Hex-HexNAc, suggesting terminal 3-sialyl-LacNAc. Moreover, serological typing revealed the possible presence of sialyl-Lewis X in two additional strains, indicating that H. bizzozeronii could also mimic the surface glycans of mammalian cells. The expression of sialyl-glycans may influence the adaptation process of H. bizzozeronii during the host jump from dogs to humans.
  •  
2.
  • Langereis, Jeroen D, et al. (författare)
  • Modified Lipooligosaccharide Structure Protects Nontypeable Haemophilus influenzae from IgM-Mediated Complement Killing in Experimental Otitis Media
  • 2012
  • Ingår i: mBio. - : American Society for Microbiology: mBio / American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, human-restricted pathogen. Although this bacterium typically colonizes the nasopharynx in the absence of clinical symptoms, it is also one of the major pathogens causing otitis media (OM) in children. Complement represents an important aspect of the host defense against NTHi. In general, NTHi is efficiently killed by complement-mediated killing; however, various resistance mechanisms have also evolved. We measured the complement resistance of NTHi isolates isolated from the nasopharynx and the middle ear fluids of OM patients. Furthermore, we determined the molecular mechanism of NTHi complement resistance. Complement resistance was strongly increased in isolates from the middle ear, which correlated with decreased binding of IgM. We identified a crucial role for the R2866_0112 gene in complement resistance. Deletion of this gene altered the lipooligosaccharide (LOS) composition of the bacterium, which increased IgM binding and complement-mediated lysis. In a novel mouse model of coinfection with influenza virus, we demonstrate decreased virulence for the R2866_0112 deletion mutant. These findings identify a mechanism by which NTHi modifies its LOS structure to prevent recognition by IgM and activation of complement. Importantly, this mechanism plays a crucial role in the ability of NTHi to cause OM. less thanbrgreater than less thanbrgreater thanIMPORTANCE Nontypeable Haemophilus influenzae (NTHi) colonizes the nasopharynx of especially young children without any obvious symptoms. However, NTHi is also a major pathogen in otitis media (OM), one of the most common childhood infections. Although this pathogen is often associated with OM, the mechanism by which this bacterium is able to cause OM is largely unknown. Our study addresses a key biological question that is highly relevant for child health: what is the molecular mechanism that enables NTHi to cause OM? We show that isolates collected from the middle ear fluid exhibit increased complement resistance and that the lipooligosaccharide (LOS) structure determines IgM binding and complement activation. Modification of the LOS structure decreased NTHi virulence in a novel NTHi-influenza A virus coinfection OM mouse model. Our findings may also have important implications for other Gram-negative pathogens harboring LOS, such as Neisseria meningitidis, Moraxella catarrhalis, and Bordetella pertussis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy