SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Ming Hsun) srt2:(2013)"

Sökning: WFRF:(Wu Ming Hsun) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akkerman, V'yacheslav, et al. (författare)
  • Fast flame acceleration and deflagration-to-detonation transition in smooth and obstructed tubes, channels and slits
  • 2013
  • Ingår i: 8th US National Combustion Meeting 2013. - : Western States Section/Combustion Institute. - 9781627488426 ; , s. 970-978
  • Konferensbidrag (refereegranskat)abstract
    • This work is devoted to the comprehensive analytical, computational and experimental investigation of various stages of flame acceleration in narrow chambers. We consider mesoscale two-dimensional channels and cylindrical tubes, smooth and obstructed, and sub-millimeter gaps between two parallel plates. The evolution of the flame shape, propagation speed, acceleration rate, and velocity profiles nearby the flamefront are determined for each configuration, with the theories substantiated by the numerical simulations of the hydrodynamics and combustion equations with an Arrhenius reaction, and by the experiments on premixed hydrogen-oxygen and ethylene-oxygen flames. The detailed analyses demonstrate three different mechanisms of flame acceleration: 1) At the early stages of burning at the closed tube end, the flamefront acquires a finger-shape and demonstrates strong acceleration during a short time interval. While this precursor acceleration mechanism is terminated as soon as the flamefornt touches the side wall of the tube, having a little relation to the deflagration-to-detonation transition (DDT) for relatively slow, hydrocarbon flames; for fast (e.g. hydrogen-oxygen) flames, even a short finger-flame acceleration may amplify the flame propagation speed up to sonic values, with an important effect on the subsequent DDT process. 2) On the other hand, the classical mechanism of flame acceleration due to wall friction in smooth tubes is basically unlimited in time, but it depends noticeably on the tube width such that the acceleration rate decreases strongly with the Reynolds number. The entire DDT scenario includes four distinctive stages: (i) initial exponential acceleration at the quasi-incompressible state; (ii) moderation of the process because of gas compression; (iii) eventual saturation to a quasisteady, high-speed flames correlated with the Chapman-Jouguet deflagration; (iv) finally, the heating of the fuel mixture leads to the explosion ahead of the flame front, which develops into a self-supporting detonation. 3) In addition, we have revealed a physical mechanism of extremely fast flame acceleration in channels/tubes with obstacles. Combining the "benefits" of 1) and 2), this new mechanism is based on delayed burning between the obstacles, creating a powerful jet-flow and thereby driving the acceleration, which is extremely strong and independent of the Reynolds number, so the effect can be fruitfully utilized at industrial scales. Understanding of this mechanism provides the guide for optimization of the obstacle shape, while this task required tantalizing cut-and-try methods previously. On the other hand, our formulation opens new technological possibilities of DDT in micro-combustion.
  •  
2.
  • Demirgok, Berk, et al. (författare)
  • Analysis of ethylene-oxygen combustion in micro-pipes
  • 2013
  • Ingår i: Fall Technical Meeting of the Eastern States Section of the Combustion Institute 2013. - : Combustion Institute. - 9781629937199 ; , s. 155-160
  • Konferensbidrag (refereegranskat)abstract
    • Propagation of premixed stoichiometric ethylene-oxygen flames in cylindrical pipes of sub/near-millimeter radii is investigated-computationally, analytically and experimentally. Namely, various stages of flame evolution such as quasi-isobaric, exponential acceleration; its moderation due to gas compression; and eventual saturation to the Chapmen-Jouget deflagration are consdiered. Specifically, we have determined the dynamics and morphology of the flame front, its propagation velocity and acceleration rate. Due to viscous heating, the entire process can be followed by the detonation initiation ahead of the flame front. The computational component of this research includes numerical solution of the hydrodynamics and combustion equations with chemical kinetics represented by one-step Arrhenius reaction. The theoretical model accounts for small, but finite Mach number; and it assumes a plane-parallel flame-generated flow, zero flame thickness as well as large thermal expansion and flame-related Reynolds number. The overall study bridges the gap between the experiments of Wu et al. [Proc. Combust. Inst. 31 (2007) 2429] and the analytical formulation of Akkerman et al. [Combust. Flame 145 (2006) 206].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Valiev, Damir (2)
Akkerman, V’yachesla ... (2)
Bychkov, Vitaly, 196 ... (2)
Wu, Ming-Hsun (2)
Kuznetsov, Mikhail (1)
Law, Chung K. (1)
visa fler...
Demirgok, Berk (1)
Almeyda, Orlando Jes ... (1)
visa färre...
Lärosäte
Umeå universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy