SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2001 3078 OR L773:2001 3078 srt2:(2020-2024)"

Search: L773:2001 3078 OR L773:2001 3078 > (2020-2024)

  • Result 1-35 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Banijamali, Mahsan, et al. (author)
  • Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis
  • 2022
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.
  •  
3.
  • Barreiro, Karina, et al. (author)
  • Urinary extracellular vesicles : Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research
  • 2021
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:12
  • Journal article (peer-reviewed)abstract
    • Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
  •  
4.
  •  
5.
  • Couch, Y., et al. (author)
  • A brief history of nearly EV-erything - The rise and rise of extracellular vesicles
  • 2021
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:14
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are small cargo-bearing vesicles released by cells into the extracellular space. The field of EVs has grown exponentially over the past two decades; this growth follows the realisation that EVs are not simply a waste disposal system as had originally been suggested by some, but also a complex cell-to-cell communication mechanism. Indeed, EVs have been shown to transfer functional cargo between cells and can influence several biological processes. These small biological particles are also deregulated in disease. As we approach the 75th anniversary of the first experiments in which EVs were unknowingly isolated, it seems right to take stock and look back on how the field started, and has since exploded into its current state. Here we review the early experiments, summarise key findings that have propelled the field, describe the growth of an organised EV community, discuss the current state of the field, and identify key challenges that need to be addressed.
  •  
6.
  • Crescitelli, Rossella, 1985, et al. (author)
  • Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation
  • 2020
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 9:1
  • Journal article (peer-reviewed)abstract
    • The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer (R), nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
  •  
7.
  •  
8.
  • González-King, Hernán, et al. (author)
  • Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair : Superiority of embryonic stem cells
  • 2024
  • In: Journal of Extracellular Vesicles. - : John Wiley & Sons. - 2001-3078. ; 13:5
  • Journal article (peer-reviewed)abstract
    • Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI. 
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Karimi, Nasibeh, et al. (author)
  • Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples
  • 2022
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Background: The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum. Method: Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti-CD63, anti-CD9 and anti-CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP-IRIS, conventional and nano flow cytometry, magnetic bead E LISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis. Results: This study shows that a higher number of CD9(+) EVs were present in EDTA-plasma compared to ACD-plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double-positive for CD63 and CD81. The CD63(+) EVs were enriched in serum, while CD81(+) vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA-plasma contained more residual platelets than ACD-plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation. Conclusion: These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti-coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
  •  
14.
  •  
15.
  •  
16.
  • Kurzawa-Akanbi, M., et al. (author)
  • Retinal pigment epithelium extracellular vesicles are potent inducers of age-related macular degeneration disease phenotype in the outer retina
  • 2022
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.
  •  
17.
  •  
18.
  • Lucien, Fabrice, et al. (author)
  • MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research
  • 2023
  • In: Journal of Extracellular Vesicles. - 2001-3078. ; 12:12
  • Journal article (peer-reviewed)abstract
    • Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.
  •  
19.
  • Mamand, Doste R., et al. (author)
  • Extracellular vesicles originating from melanoma cells promote dysregulation in haematopoiesis as a component of cancer immunoediting
  • 2024
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 13:7
  • Journal article (peer-reviewed)abstract
    • Haematopoiesis dysregulation with the presence of immature myeloid and erythroid immunosuppressive cells are key characteristics of the immune escape phase of tumour development. Here, the role of in vitro generated B16F10 tumour cell-derived extracellular vesicles (tEVs) as indirect cellular communicators, participating in tumour-induced dysregulation of haematopoiesis, was explored. The isolated tEVs displayed features of small EVs with a size range of 100-200 nm, expressed the common EV markers CD63, CD9, and Alix, and had a spherical shape with a lipid bilayer membrane. Proteomic profiling revealed significant levels of angiogenic factors, particularly vascular endothelial growth factor (VEGF), osteopontin, and tissue factor, associated with the tEVs. Systemic administration of these tEVs in syngeneic mice induced splenomegaly and disrupted haematopoiesis, leading to extramedullary haematopoiesis, expansion of splenic immature erythroid progenitors, reduced bone marrow cellularity, medullary expansion of granulocytic myeloid suppressor cells, and the development of anaemia. These effects closely mirrored those observed in tumour-bearing mice and were not seen after heat inactivating the tEVs. In vitro studies demonstrated that tEVs independently induced the expansion of bone marrow granulocytic myeloid suppressor cells and B cells while reducing the frequency of cells in the erythropoietic lineage. These effects of tEVs were significantly abrogated by the blockade of VEGF or heat inactivation. Our findings underscore the important role of tEVs in dysregulating haematopoiesis during the immune escape phase of cancer immunoediting, suggesting their potential as targets for addressing immune evasion and reinstating normal hematopoietic processes.
  •  
20.
  •  
21.
  • Mitchell, Megan, I, et al. (author)
  • Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV-CATCHER) : A customizable purification assay designed for small-RNA biomarker identification and evaluation of circulating small-EVs
  • 2021
  • In: Journal of Extracellular Vesicles. - : John Wiley & Sons. - 2001-3078. ; 10:8
  • Journal article (peer-reviewed)abstract
    • Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.
  •  
22.
  •  
23.
  •  
24.
  • Olofsson Bagge, Roger, 1978, et al. (author)
  • Three-dimensional reconstruction of interstitial extracellular vesicles in human liver as determined by electron tomography
  • 2023
  • In: Journal of Extracellular Vesicles. - 2001-3078. ; 12:12
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are lipid bilayer nanoparticles involved in cell-cell communication that are released into the extracellular space by all cell types. The cargo of EVs includes proteins, lipids, nucleic acids, and metabolites reflecting their cell of origin. EVs have recently been isolated directly from solid tissues, and this may provide insights into how EVs mediate communication between cells in vivo. Even though EVs have been isolated from tissues, their point of origin when they are in the interstitial space has been uncertain. In this study, we performed three-dimensional (3D) reconstruction using transmission electron tomography of metastatic and normal liver tissues with a focus on the presence of EVs in the interstitium. After chemical fixation of the samples and subsequent embedding of tissue pieces in resin, ultrathin slices (300 nm) were cut and imaged on a 120 ekV transmission electron microscopy as a tilt series (a series of subsequent images tilted at different angles). These were then computationally illustrated in a 3D manner to reconstruct the imaged tissue volume. We identified the cells delimiting the interstitial space in both types of tissues, and small distinct spherical structures with a diameter of 30-200 nm were identified between the cells. These round structures appeared to be more abundant in metastatic tissue compared to normal tissue. We suggest that the observed spherical structures in the interstitium of the metastatic and non-metastatic liver represent EVs. This work thus provides the first 3D visualization of EVs in human tissue. Three-dimensional (3D) reconstruction of both liver metastases and normal liver, using transmission electron tomography, identified spherical structures with a diameter of 30-200 nm in the interstitium of both types of tissues.image
  •  
25.
  • Park, Kyong-Su, et al. (author)
  • Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy
  • 2021
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:9
  • Journal article (peer-reviewed)abstract
    • Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.
  •  
26.
  •  
27.
  • Urzi, Ornella, et al. (author)
  • Heat inactivation of foetal bovine serum performed after EV-depletion influences the proteome of cell-derived extracellular vesicles
  • 2024
  • In: JOURNAL OF EXTRACELLULAR VESICLES. - 2001-3078. ; 13:1
  • Journal article (peer-reviewed)abstract
    • The release of extracellular vesicles (EVs) in cell cultures as well as their molecular cargo can be influenced by cell culture conditions such as the presence of foetal bovine serum (FBS). Although several studies have evaluated the effect of removing FBS-derived EVs by ultracentrifugation (UC), less is known about the influence of FBS heat inactivation (HI) on the cell-derived EVs. To assess this, three protocols based on different combinations of EV depletion by UC and HI were evaluated, including FBS ultracentrifuged but not heat inactivated (no-HI FBS), FBS heat inactivated before EV depletion (HI-before EV-depl FBS), and FBS heat inactivated after EV depletion (HI-after EV-depl FBS). We isolated large (L-EVs) and small EVs (S-EVs) from FBS treated in the three different ways, and we found that the S-EV pellet from HI-after EV-depl FBS was larger than the S-EV pellet from no-HI FBS and HI-before EV-depl FBS. Transmission electron microscopy, protein quantification, and particle number evaluation showed that HI-after EV-depl significantly increased the protein amount of S-EVs but had no significant effect on L-EVs. Consequently, the protein quantity of S-EVs isolated from three cell lines cultured in media supplemented with HI-after EV-depl FBS was significantly increased. Quantitative mass spectrometry analysis of FBS-derived S-EVs showed that the EV protein content was different when FBS was HI after EV depletion compared to EVs isolated from no-HI FBS and HI-before EV-depl FBS. Moreover, we show that several quantified proteins could be ascribed to human origin, thus demonstrating that FBS bovine proteins can mistakenly be attributed to human cell-derived EVs. We conclude that HI of FBS performed after EV depletion results in changes in the proteome, with molecules that co-isolate with EVs and can contaminate EVs when used in subsequent cell cultures. Our recommendation is, therefore, to always perform HI of FBS prior to EV depletion.
  •  
28.
  • Urzi, Ornella, et al. (author)
  • The dark side of foetal bovine serum in extracellular vesicle studies
  • 2022
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 11:10
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) have been shown to be involved in cell-cell communication and to take part in both physiological and pathological processes. Thanks to their exclusive cargo, which includes proteins, lipids, and nucleic acids from the originating cells, they are gaining interest as potential biomarkers of disease. In recent years, their appealing features have been fascinating researchers from all over the world, thus increasing the number of in vitro studies focused on EV release, content, and biological activities. Cultured cell lines are the most-used source of EVs; however, the EVs released in cell cultures are influenced by the cell culture conditions, such as the use of foetal bovine serum (FBS). PBS is the most common supplement for cell culture media, but it is also a source of contaminants, such as exogenous bovine EVs, RNA, and protein aggregates, that can contaminate the cell-derived EVs and influence their cargo composition. The presence of FBS contaminants in cell-derived EV samples is a well-known issue that limits the clinical applications of EVs, thus increasing the need for standardization. In this review, we will discuss the pros and cons of using PBS in cell cultures as a source of EVs, as well as the protocols used to remove contaminants from FBS.
  •  
29.
  •  
30.
  • Veerman, Rosanne E., et al. (author)
  • Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin
  • 2021
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:9
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are increasingly tested as therapeutic vehicles and biomarkers, but still EV subtypes are not fully characterised. To isolate EVs with few co-isolated entities, a combination of methods is needed. However, this is time-consuming and requires large sample volumes, often not feasible in most clinical studies or in studies where small sample volumes are available. Therefore, we compared EVs rendered by five commonly used methods based on different principles from conditioned cell medium and 250 mu l or 3 ml plasma, that is, precipitation (ExoQuick ULTRA), membrane affinity (exoEasy Maxi Kit), size-exclusion chromatography (qEVoriginal), iodixanol gradient (OptiPrep), and phosphatidylserine affinity (MagCapture). EVs were characterised by electron microscopy, Nanoparticle Tracking Analysis, Bioanalyzer, flow cytometry, and LC-MS/MS. The different methods yielded samples of different morphology, particle size, and proteomic profile. For the conditioned medium, Izon 35 isolated the highest number of EV proteins followed by exoEasy, which also isolated fewer non-EV proteins. For the plasma samples, exoEasy isolated a high number of EV proteins and few non-EV proteins, while Izon 70 isolated the most EV proteins. We conclude that no method is perfect for all studies, rather, different methods are suited depending on sample type and interest in EV subtype, in addition to sample volume and budget.
  •  
31.
  •  
32.
  • Welsh, Joshua A., et al. (author)
  • Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
  • 2024
  • In: Journal of Extracellular Vesicles. - : John Wiley and Sons Inc. - 2001-3078. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
  •  
33.
  •  
34.
  •  
35.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-35 of 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view