SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Collen A.) srt2:(2015-2019)"

Sökning: WFRF:(Collen A.) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
2.
  • Borestrom, C., et al. (författare)
  • A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery
  • 2018
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 94:6, s. 1099-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of physiologically relevant cellular models with strong translatability to human pathophysiology is critical for identification and validation of novel therapeutic targets. Herein we describe a detailed protocol for generation of an advanced 3-dimensional kidney cellular model using induced pluripotent stem cells, where differentiation and maturation of kidney progenitors and podocytes can be monitored in live cells due to CRISPR/Cas9-mediated fluorescent tagging of kidney lineage markers (SIX2 and NPHS1). Utilizing these cell lines, we have refined the previously published procedures to generate a new, higher throughput protocol suitable for drug discovery. Using paraffin-embedded sectioning and whole-mount immunostaining, we demonstrated that organoids grown in suspension culture express key markers of kidney biology (WT1, ECAD, LTL, nephrin) and vasculature (CD31) within renal cortical structures with microvilli, tight junctions and podocyte foot processes visualized by electron microscopy. Additionally, the organoids resemble the adult kidney transcriptomics profile, thereby strengthening the translatability of our in vitro model. Thus, development of human nephron-like structures in vitro fills a major gap in our ability to assess the effect of potential treatment on key kidney structures, opening up a wide range of possibilities to improve clinical translation.
  •  
3.
  • Gan, Li-Ming, 1969, et al. (författare)
  • Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4-24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis.
  •  
4.
  • Olsen, Jeanine L, et al. (författare)
  • The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 530:7590, s. 331-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy