SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wincent J) srt2:(2015-2019)"

Sökning: WFRF:(Wincent J) > (2015-2019)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Eisfeldt, J., et al. (författare)
  • Comprehensive structural variation genome map of individuals carrying complex chromosomal rearrangements
  • 2019
  • Ingår i: PLOS Genetics. - : NLM (Medline). - 1553-7390 .- 1553-7404. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex chromosomal rearrangements (CCRs) are rearrangements involving more than two chromosomes or more than two breakpoints. Whole genome sequencing (WGS) allows for outstanding high resolution characterization on the nucleotide level in unique sequences of such rearrangements, but problems remain for mapping breakpoints in repetitive regions of the genome, which are known to be prone to rearrangements. Hence, multiple complementary WGS experiments are sometimes needed to solve the structures of CCRs. We have studied three individuals with CCRs: Case 1 and Case 2 presented with de novo karyotypically balanced, complex interchromosomal rearrangements (46,XX,t(2;8;15)(q35;q24.1;q22) and 46,XY,t(1;10;5)(q32;p12;q31)), and Case 3 presented with a de novo, extremely complex intrachromosomal rearrangement on chromosome 1. Molecular cytogenetic investigation revealed cryptic deletions in the breakpoints of chromosome 2 and 8 in Case 1, and on chromosome 10 in Case 2, explaining their clinical symptoms. In Case 3, 26 breakpoints were identified using WGS, disrupting five known disease genes. All rearrangements were subsequently analyzed using optical maps, linked-read WGS, and short-read WGS. In conclusion, we present a case series of three unique de novo CCRs where we by combining the results from the different technologies fully solved the structure of each rearrangement. The power in combining short-read WGS with long-molecule sequencing or optical mapping in these unique de novo CCRs in a clinical setting is demonstrated.
  •  
4.
  •  
5.
  • Nilsson, D., et al. (författare)
  • Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation
  • 2017
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 38:2, s. 180-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.
  •  
6.
  •  
7.
  • Wincent, J, et al. (författare)
  • Erratum
  • 2016
  • Ingår i: Molecular genetics & genomic medicine. - : Wiley. - 2324-9269. ; 4:3, s. 367-367
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Fergelot, Patricia, et al. (författare)
  • Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by EP300 mutations
  • 2016
  • Ingår i: American Journal of Medical Genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 170:12, s. 3069-3082
  • Tidskriftsartikel (refereegranskat)abstract
    • Rubinstein–Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8–10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins. Up to now 26 individuals with an EP300 mutation have been published. Here, we describe the phenotype and genotype of 42 unpublished RSTS patients carrying EP300 mutations and intragenic deletions and offer an update on another 10 patients. We compare the data to 308 individuals with CREBBP mutations. We demonstrate that EP300 mutations cause a phenotype that typically resembles the classical RSTS phenotype due to CREBBP mutations to a great extent, although most facial signs are less marked with the exception of a low-hanging columella. The limb anomalies are more similar to those in CREBBP mutated individuals except for angulation of thumbs and halluces which is very uncommon in EP300 mutated individuals. The intellectual disability is variable but typically less marked whereas the microcephaly is more common. All types of mutations occur but truncating mutations and small rearrangements are most common (86%). Missense mutations in the HAT domain are associated with a classical RSTS phenotype but otherwise no genotype–phenotype correlation is detected. Pre-eclampsia occurs in 12/52 mothers of EP300 mutated individuals versus in 2/59 mothers of CREBBP mutated individuals, making pregnancy with an EP300 mutated fetus the strongest known predictor for pre-eclampsia.
  •  
9.
  •  
10.
  •  
11.
  • Wincent, Emma, et al. (författare)
  • Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner
  • 2016
  • Ingår i: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 110, s. 117-129
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Formylindolo[3,2-b]carbazole (FICZ) is a potent aryl hydrocarbon receptor (AHR) agonist that is efficiently metabolized by AHR-regulated cytochrome P4501 enzymes. FICZ is a proposed physiological AHR ligand that induces its own degradation as part of a regulatory negative feedback loop. In vitro studies in cells show that CYP1 inhibition in the presence of FICZ results in enhanced AHR activation, suggesting that FICZ accumulates in the cell when its metabolism is blocked. We used zebrafish (Danio rerio) embryos to investigate the in vivo effects of FICZ when CYP1A is knocked down or inhibited. Embryos were injected with morpholino antisense oligonucleotides targeting CYP1A (CYP1A-MO), Ahr2, or a combination of both. FICZ exposure of non-injected embryos or embryos injected with control morpholino had little effect. In CYP1A-MO-injected embryos, however, FICZ dramatically increased mortality, incidence and severity of pericardial edema and circulation failure, reduced hatching frequency, blocked swim bladder inflation, and strongly potentiated expression of Ahr2-regulated genes. These effects were substantially reduced in embryos with a combined knockdown of Ahr2 and CYP1A, indicating that the toxicity was mediated at least partly by Ahr2. Co-exposure to the CYP1 inhibitor alpha-naphthoflavone (αNF) and FICZ had similar effects as the combination of CYP1A-MO and FICZ. HPLC analysis of FICZ-exposed embryos showed increased levels of FICZ after concomitant CYP1A-MO injection or αNF co-exposure. Together, these results show that a functioning CYP1/AHR feedback loop is crucial for regulation of AHR signaling by a potential physiological ligand in vivo and further highlights the role of CYP1 enzymes in regulating biological effects of FICZ.
  •  
12.
  • Wincent, Emma, et al. (författare)
  • Combination effects of AHR agonists and Wnt/beta-catenin modulators in zebrafish embryos : Implications for physiological and toxicological AHR functions
  • 2015
  • Ingår i: Toxicology and Applied Pharmacology. - : Elsevier BV. - 0041-008X .- 1096-0333. ; 284:2, s. 163-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Wnt/beta-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between beta-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the beta-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with beta-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of p-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a beta-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonudeotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of beta-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of p-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating beta-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy