SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsen Niels B.) "

Sökning: WFRF:(Larsen Niels B.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
2.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
3.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
4.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
5.
  • Graae, Anne-Sofie, et al. (författare)
  • ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:3, s. 502-514
  • Tidskriftsartikel (refereegranskat)abstract
    • The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective over expression resulted in decreased insulin signaling presumably mediated through alterations of the integrin 131 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondria! function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
  •  
6.
  • Reisner, Walter, et al. (författare)
  • Single-molecule denaturation mapping of DNA in nanofluidic channels
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:30, s. 13294-13299
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence. Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells.
  •  
7.
  • Vrang, Niels, et al. (författare)
  • The Imprinted Gene Neuronatin Is Regulated by Metabolic Status and Associated With Obesity.
  • 2010
  • Ingår i: Obesity. - : Wiley. - 1930-7381. ; 18:7, s. 1289-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Using restriction fragment differential display (RFDD) technology, we have identified the imprinted gene neuronatin (Nnat) as a hypothalamic target under the influence of leptin. Nnat mRNA expression is decreased in several key appetite regulatory hypothalamic nuclei in rodents with impaired leptin signaling and during fasting conditions. Furthermore, peripheral administration of leptin to ob/ob mice normalizes hypothalamic Nnat expression. Comparative immunohistochemical analysis of human and rat hypothalami demonstrates that NNAT protein is present in anatomically equivalent nuclei, suggesting human physiological relevance of the gene product(s). A putative role of Nnat in human energy homeostasis is further emphasized by a consistent association between single nucleotide polymorphisms (SNPs) in the human Nnat gene and severe childhood and adult obesity.
  •  
8.
  • Comina Bellido, German (författare)
  • Autonomous Lab-on-a-chip: solutions and fast prototyping tools
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, solutions for the development of autonomous Lab-on-a-chip (LOC), and 3D printing for fast prototyping of LOC devices are investigated. Lab-on-a-chip devices integrate analytical systems and conditioning processes in a compact package. Small sample volume, disposability, ability to perform complex analysis and performance comparable to classical instrumentation are characteristics that make LOCs excellent candidates for biomedical applications, environmental monitoring and food analysis. Classical LOC configurations usually require additional elements such as pumps, valves, fluidics interface connectors, and even pneumatic control to operate. Also, in most cases, a computer-capable device, or standalone control system, is needed in connection with the measurements. Autonomous LOCs avoid the use of additional components, as they are designed to integrate all necessary parts in one design. Cell phones are the most wide spread computer capable devices, and the advantage to exploit them as analytical instruments is obvious. They have been used in connection with microfluidic LOC measurements, typically using accessory dongles. To connect to the LOCs, in some cases, even permanent modifications of the phones were required. In this thesis, direct coupling to cell phone readout, without accessories beyond the LOC, has been investigated. Autonomous LOC development demands extensive time and resources for prototype optimization. Classical LOC fabrication methods, which are based on lithographic microfabrication, require special equipment and facilities. Additionally, the fabrication of 3D structures require multiple fabrication steps with numerous intermediate alignment. In this thesis, commercial-grade, low-cost 3D printers have been investigated as fast LOC prototyping platforms. The printers (Miicraft® DLP-3D printer and Formlabs Inc. Form+1) are based on Stereo Lithography (SLA). In this additive fabrication technique, a 3D computer model of the LOC is designed. Later, the 3D model is sliced in 2D patterns along the height of the design, and each of the 2D patterns is projected through the printer transparent tank bottom, which contains a liquid photocurable resin. Each exposure cures a thin layer of the resin, and the procedure is repeated adding layer after layer until the 3D printout is completed. With this technique it was possible to obtain real 3D LOC structures with unlimited number of 3D features in one step, within the hour, and at low-cost for prototyping, which constitutes a superb tool for fast and affordable sophistication of LOC architecture. The process was extended in this thesis to another area of complex and costly development: the manufacture of optical components. It was shown that optical components with arbitrary geometry could be obtained within the hour and typically for less than 1€/prototype. The first use of the technique was to produce templates for classical LOCs of polydimethylsiloxane (PDMS) on glass. The procedure was the first, to our knowledge, implemented with consumer grade printers, and included a demonstration of template fabrication for the development of a multilayer PDMS-LOC for colorimetric detection of glucose. The technique then evolved to the complete replacement of the PDMS stage, by conceiving the LOC architecture as a single monolithic printout. This concept was coined Unibody LOC (ULOC) and was used in this thesis for the development of all the autonomous Lab on a Chip solutions. Numerous solutions towards autonomous LOCs were developed such as: multidimensional adaptors that connect for example 1.6mm diameter tubing directly to 50μm wide microfluidic channels, several on plane and multilayer mixers, hybrid ULOC with paper channels, finger-pumps, check-valves, optical couplers and 3D printed optics. Time-dependent optical response bio-chemical reactions were identified as key to implement the link between autonomous LOC with cell phones without other accessories, and relying on ambient light as illumination. Such approach improves the analytical resolution of a colorimetric measurement using essentially the same camera. Finally, all those solutions were integrated to develop a chemical sensing interface for universal cell phone readout, and a 3D printed device for quantitative enzymatic detection using cell phones. 
  •  
9.
  • Gustafsen, Camilla, et al. (författare)
  • Heparan sulfate proteoglycans present PCSK9 to the LDL receptor
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9: LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (18)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Larsen, Niels B. (9)
Hansen, Torben (6)
Grarup, Niels (5)
Pedersen, Oluf (5)
Lind, Lars (4)
Sattar, Naveed (4)
visa fler...
North, Kari E. (4)
Wareham, Nicholas J. (4)
Kuusisto, Johanna (4)
Laakso, Markku (4)
McCarthy, Mark I (4)
Bork-Jensen, Jette (4)
Brandslund, Ivan (4)
Linneberg, Allan (4)
Langenberg, Claudia (4)
Boehnke, Michael (4)
Mohlke, Karen L (4)
Saleheen, Danish (4)
Thorleifsson, Gudmar (4)
Thorsteinsdottir, Un ... (4)
Stefansson, Kari (4)
Locke, Adam E. (4)
Rotter, Jerome I. (4)
Hattersley, Andrew T (4)
Mahajan, Anubha (4)
Luan, Jian'an (4)
Palmer, Colin N. A. (4)
Kooperberg, Charles (4)
Fornage, Myriam (4)
Loos, Ruth J F (4)
Zeggini, Eleftheria (4)
Lange, Leslie A. (4)
Wilson, James G. (4)
Kristensen, Anders (4)
Frayling, Timothy M (4)
Kardia, Sharon L R (4)
Morris, Andrew P. (4)
Abecasis, Gonçalo (4)
Jukema, J. Wouter (4)
Mook-Kanamori, Denni ... (4)
Zhang, Weihua (4)
Kooner, Jaspal S. (4)
Chambers, John C. (4)
Dedoussis, George (4)
Trompet, Stella (4)
Sim, Xueling (4)
Guo, Xiuqing (4)
Yao, Jie (4)
Bielak, Lawrence F (4)
Graff, Mariaelisa (4)
visa färre...
Lärosäte
Lunds universitet (12)
Uppsala universitet (6)
Göteborgs universitet (4)
Umeå universitet (2)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (7)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy