SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Kaaks R)) mspu:(article) pers:(Giles Graham G) "

Sökning: (WFRF:(Kaaks R)) mspu:(article) pers:(Giles Graham G)

  • Resultat 1-25 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:8, s. 868-U202
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 x 10(-14)), 18q21.33 (BCL2, P = 7.76 x 10(-11)), 11p15.5 (C11orf21, P = 2.15 x 10(-10)), 4q25 (LEF1, P = 4.24 x 10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P = 2.50 x 10(-9)), 9p21.3 (CDKN2B-AS1, P = 1.27 x 10(-8)), 18q21.32 (PMAIP1, P = 2.51 x 10(-8)), 15q15.1 (BMF, P = 2.71 x 10(-10)) and 2p22.2 (QPCT, P = 1.68 x 10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P = 2.08 x 10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P = 5.40 x 10(-8)) and 5p15.33 (TERT, P = 1.92 x 10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism.
  •  
3.
  • Berndt, Sonja I., et al. (författare)
  • Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P = 2.55 x 10(-11)), 6p25.2 (rs73718779, SERPINB6, P = 1.97 x 10(-8)) and 3q28 (rs9815073, LPP, P = 3.62 x 10(-8)), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P = 1.00 x 10(-11)) in the combined analysis. We find suggestive evidence (P<5 x 10(-7)) for two additional new loci at 4q24 (rs10028805, BANK1, P = 7.19 x 10(-8)) and 3p22.2 (rs1274963, CSRNP1, P = 2.12 x 10(-7)). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility.
  •  
4.
  • Cerhan, James R., et al. (författare)
  • Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:11, s. 1233-1238
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 x 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 x 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 x 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 x 10(-13) and 3.63 x 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.
  •  
5.
  • Machiela, Mitchell J., et al. (författare)
  • Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes
  • 2016
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 25:8, s. 1663-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82, P-value = 8.5 x 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51, P-value = 4.0 x 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.
  •  
6.
  • Bernatsky, Sasha, et al. (författare)
  • Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
  • 2017
  • Ingår i: Lupus Science and Medicine. - : BMJ. - 2053-8790. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.
  •  
7.
  • Berndt, Sonja, I, et al. (författare)
  • Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
  • 2022
  • Ingår i: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:12, s. 2835-2844
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
  •  
8.
  • Din, Lennox, et al. (författare)
  • Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes
  • 2019
  • Ingår i: Genetic Epidemiology. - : WILEY. - 0741-0395 .- 1098-2272. ; 43:7, s. 844-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p =.0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs.
  •  
9.
  • Skibola, Christine F, et al. (författare)
  • Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 95:4, s. 462-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10(-20)) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10(-11)) near ETS1; 3q28 (rs6444305, p = 1.10 × 10(-10)) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10(-10)) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10(-8)) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10(-67) to 2.67 × 10(-70)). Additional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] = 1.44; p = 4.59 × 10(-16)) and rs3130437 in HLA class I (ORper-allele = 1.23; p = 8.23 × 10(-9)). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.
  •  
10.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
11.
  • Zanti, Maria, et al. (författare)
  • A Likelihood Ratio Approach for Utilizing Case-Control Data in the Clinical Classification of Rare Sequence Variants : Application to BRCA1 and BRCA2
  • 2023
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity-findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.
  •  
12.
  • Ahearn, Thomas U., et al. (författare)
  • Common variants in breast cancer risk loci predispose to distinct tumor subtypes
  • 2022
  • Ingår i: Breast Cancer Research. - : Springer Nature. - 1465-5411 .- 1465-542X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGenome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.MethodsAmong 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes.ResultsEighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions.ConclusionThis report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
  •  
13.
  • Wang, Sophia S., et al. (författare)
  • HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:14, s. 4086-4096
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06-1.60; OR MZL = 1.45, 95% CI = 1.12-1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24-3.55; OR MZL = 2.10, 95% CI = 0.99-4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend < 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma.
  •  
14.
  • Dixon-Suen, Suzanne C, et al. (författare)
  • Physical activity, sedentary time and breast cancer risk : a Mendelian randomisation study
  • 2022
  • Ingår i: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 56:20, s. 1157-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics.METHODS: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105-377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity.RESULTS: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger).CONCLUSION: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women.
  •  
15.
  • Escala-Garcia, Maria, et al. (författare)
  • A network analysis to identify mediators of germline-driven differences in breast cancer prognosis
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies similar to 7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.
  •  
16.
  • Jung, Audrey Y, et al. (författare)
  • Distinct reproductive risk profiles for intrinsic-like breast cancer subtypes : pooled analysis of population-based studies
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 114:12, s. 1706-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Reproductive factors have been shown to be differentially associated with risk of estrogen receptor (ER) positive and ER-negative breast cancer. However, their associations with intrinsic-like subtypes are less clear.METHODS: Analyses included up to 23,353 cases, and 71,072 controls pooled from 31 population-based case-control or cohort studies in the Breast Cancer Association Consortium across 16 countries on 4 continents. Polytomous logistic regression was used to estimate the association between reproductive factors and risk of breast cancer by intrinsic-like subtypes (luminal A-like, luminal B-like, luminal B-HER2-like, HER2-enriched-like, and triple-negative) and by invasiveness. All statistical tests were 2-sided.RESULTS: Compared to nulliparous women, parous women had a lower risk of luminal A-like, luminal B-like, luminal B-HER2-like and HER2-enriched-like disease. This association was apparent only after approximately 10 years since last birth and became stronger with increasing time (odds ratio [OR] = 0.59, 95% confidence interval [CI] = 0.49 to 0.71; and OR = 0.36, 95% CI = 0.28 to 0.46; for multiparous women with luminal A-like tumors 20-<25 years after last birth and 45-<50 years after last birth, respectively). In contrast, parous women had a higher risk of triple-negative breast cancer right after their last birth (for multiparous women: OR = 3.12, 95%CI = 2.02 to 4.83) that was attenuated with time but persisted for decades (OR = 1.03, 95%CI = 0.79 to 1.34, for multiparous women 25 to < 30 years after last birth). Older age at first birth (P-heterogeneity<.001 for triple-negative compared to luminal-A like) and breastfeeding (P-heterogeneity<.001 for triple-negative compared to luminal-A like) were associated with lower risk of triple-negative but not with other disease subtypes. Younger age at menarche was associated with higher risk of all subtypes; older age at menopause was associated with higher risk of luminal A-like but not triple-negative breast cancer. Associations for in situ tumors were similar to luminal A-like.CONCLUSION: This large and comprehensive study demonstrates a distinct reproductive risk factor profile for triple-negative breast cancer compared to other subtypes, with implications for the understanding of disease etiology and risk prediction.
  •  
17.
  • Kapoor, Pooja Middha, et al. (författare)
  • Combined associations of a polygenic risk score and classical risk factors with breast cancer risk
  • 2021
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 113:3, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer. 
  •  
18.
  • Kar, Siddhartha P., et al. (författare)
  • The association between weight at birth and breast cancer risk revisited using Mendelian randomisation
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:6, s. 591-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies suggest that higher birth weight (BW) is associated with increased risk of breast cancer in adult life. We conducted a two-sample Mendelian randomisation (MR) study to assess whether this association is causal. Sixty independent single nucleotide polymorphisms (SNPs) known to be associated at P < 5 × 10 −8 with BW were used to construct (1) a 41-SNP instrumental variable (IV) for univariable MR after removing SNPs with pleiotropic associations with other breast cancer risk factors and (2) a 49-SNP IV for multivariable MR after filtering SNPs for data availability. BW predicted by the 41-SNP IV was not associated with overall breast cancer risk in inverse-variance weighted (IVW) univariable MR analysis of genetic association data from 122,977 breast cancer cases and 105,974 controls (odds ratio = 0.86 per 500 g higher BW; 95% confidence interval 0.73–1.01). Sensitivity analyses using four alternative methods and three alternative IVs, including an IV with 59 of the 60 BW-associated SNPs, yielded similar results. Multivariable MR adjusting for the effects of the 49-SNP IV on birth length, adult height, adult body mass index, age at menarche, and age at menopause using IVW and MR-Egger methods provided estimates consistent with univariable analyses. Results were also similar when all analyses were repeated after restricting to estrogen receptor-positive or -negative breast cancer cases. Point estimates of the odds ratios from most analyses performed indicated an inverse relationship between genetically-predicted BW and breast cancer, but we are unable to rule out an association between the non-genetically-determined component of BW and breast cancer. Thus, genetically-predicted higher BW was not associated with an increased risk of breast cancer in adult life in our MR study.
  •  
19.
  • Middha, Pooja K., et al. (författare)
  • A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry
  • 2023
  • Ingår i: Breast Cancer Research. - : BioMed Central (BMC). - 1465-5411 .- 1465-542X. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genome-wide studies of gene-environment interactions (GxE) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide GxE analysis of similar to 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. Methods Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. Results Assuming a 1 x 10(-5) prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). Conclusions Overall, the contribution of GxE interactions to the heritability of breast cancer is very small. At the population level, multiplicative GxE interactions do not make an important contribution to risk prediction in breast cancer.
  •  
20.
  • Nichols, Hazel B, et al. (författare)
  • Breast Cancer Risk After Recent Childbirth : A Pooled Analysis of 15 Prospective Studies
  • 2019
  • Ingår i: Annals of Internal Medicine. - : American College of Physicians. - 0003-4819 .- 1539-3704. ; 170:1, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parity is widely recognized as protective for breast cancer, but breast cancer risk may be increased shortly after childbirth. Whether this risk varies with breastfeeding, family history of breast cancer, or specific tumor subtype has rarely been evaluated.Objective: To characterize breast cancer risk in relation to recent childbirth.Design: Pooled analysis of individual-level data from 15 prospective cohort studies.Setting: The international Premenopausal Breast Cancer Collaborative Group.Participants: Women younger than 55 years.Measurements: During 9.6 million person-years of follow-up, 18 826 incident cases of breast cancer were diagnosed. Hazard ratios (HRs) and 95% CIs for breast cancer were calculated using Cox proportional hazards regression.Results: Compared with nulliparous women, parous women had an HR for breast cancer that peaked about 5 years after birth (HR, 1.80 [95% CI, 1.63 to 1.99]) before decreasing to 0.77 (CI, 0.67 to 0.88) after 34 years. The association crossed over from positive to negative about 24 years after birth. The overall pattern was driven by estrogen receptor (ER)-positive breast cancer; no crossover was seen for ER-negative cancer. Increases in breast cancer risk after childbirth were pronounced when combined with a family history of breast cancer and were greater for women who were older at first birth or who had more births. Breastfeeding did not modify overall risk patterns.Limitations: Breast cancer diagnoses during pregnancy were not uniformly distinguishable from early postpartum diagnoses. Data on human epidermal growth factor receptor 2 (HER2) oncogene overexpression were limited.Conclusion: Compared with nulliparous women, parous women have an increased risk for breast cancer for more than 20 years after childbirth. Health care providers should consider recent childbirth a risk factor for breast cancer in young women.Primary Funding Source: The Avon Foundation, the National Institute of Environmental Health Sciences, Breast Cancer Now and the UK National Health Service, and the Institute of Cancer Research.
  •  
21.
  • Shu, Xiang, et al. (författare)
  • Associations of obesity and circulating insulin and glucose with breast cancer risk : a Mendelian randomization analysis
  • 2019
  • Ingår i: International Journal of Epidemiology. - : OXFORD UNIV PRESS. - 0300-5771 .- 1464-3685. ; 48:3, s. 795-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. Methods: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 x 10(-4)], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 x 10(-4)), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 x 10(-19)) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 x 10(-6)). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. Conclusions: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer.
  •  
22.
  •  
23.
  • Trabert, Britton, et al. (författare)
  • The Risk of Ovarian Cancer Increases with an Increase in the Lifetime Number of Ovulatory Cycles : An Analysis from the Ovarian Cancer Cohort Consortium (OC3)
  • 2020
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 80:5, s. 1210-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • Repeated exposure to the acute proinflammatory environment that follows ovulation at the ovarian surface and distal fallopian tube over a woman's reproductive years may increase ovarian cancer risk. To address this, analyses included individual-level data from 558,709 naturally menopausal women across 20 prospective cohorts, among whom 3,246 developed invasive epithelial ovarian cancer (2,045 serous, 319 endometrioid, 184 mucinous, 121 clear cell, 577 other/unknown). Cox models were used to estimate multivariable-adjusted HRs between lifetime ovulatory cycles (LOC) and its components and ovarian cancer risk overall and by histotype. Women in the 90th percentile of LOC (>514 cycles) were almost twice as likely to be diagnosed with ovarian cancer than women in the 10th percentile (<294) [HR (95% confidence interval): 1.92 (1.60-2.30)]. Risk increased 14% per 5-year increase in LOC (60 cycles) [(1.10-1.17)]; this association remained after adjustment for LOC components: number of pregnancies and oral contraceptive use [1.08 (1.04-1.12)]. The association varied by histotype, with increased risk of serous [1.13 (1.09-1.17)], endometrioid [1.20 (1.10-1.32)], and clear cell [1.37 (1.18-1.58)], but not mucinous [0.99 (0.88-1.10), P-heterogeneity = 0.01] tumors. Heterogeneity across histotypes was reduced [P-heterogeneity = 0.15] with adjustment for LOC components [1.08 serous, 1.11 endometrioid, 1.26 clear cell, 0.94 mucinous]. Although the 10-year absolute risk of ovarian cancer is small, it roughly doubles as the number of LOC rises from approximately 300 to 500. The consistency and linearity of effects strongly support the hypothesis that each ovulation leads to small increases in the risk of most ovarian cancers, a risk that cumulates through life, suggesting this as an important area for identifying intervention strategies.
  •  
24.
  • Wang, Xiaoliang, et al. (författare)
  • Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Use of menopausal hormone therapy (MHT) is associated with increased risk for breast cancer. However, the relevant mechanisms and its interaction with genetic variants are not fully understood. We conducted a genome-wide interaction analysis between MHT use and genetic variants for breast cancer risk in 27,585 cases and 34,785 controls from 26 observational studies. All women were post-menopausal and of European ancestry. Multivariable logistic regression models were used to test for multiplicative interactions between genetic variants and current MHT use. We considered interaction p-values < 5 x 10(-8) as genome-wide significant, and p-values < 1 x 10(-5) as suggestive. Linkage disequilibrium (LD)-based clumping was performed to identify independent candidate variants. None of the 9.7 million genetic variants tested for interactions with MHT use reached genome-wide significance. Only 213 variants, representing 18 independent loci, had p-values < 1 x 10(5). The strongest evidence was found for rs4674019 (p-value = 2.27 x 10(-7)), which showed genome-wide significant interaction (p-value = 3.8 x 10(-8)) with current MHT use when analysis was restricted to population-based studies only. Limiting the analyses to combined estrogen-progesterone MHT use only or to estrogen receptor (ER) positive cases did not identify any genome-wide significant evidence of interactions. In this large genome-wide SNP-MHT interaction study of breast cancer, we found no strong support for common genetic variants modifying the effect of MHT on breast cancer risk. These results suggest that common genetic variation has limited impact on the observed MHT-breast cancer risk association.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy