SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-87896"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-87896" > Modelling the break...

Modelling the breakup of solid aggregates in turbulent flows

Bäbler, Matthäus (författare)
ETH, Inst Chem & Bioengn, Dept Chem & Appl Biosci
Morbidelli, M. (författare)
Baldyga, Jerzy (författare)
 (creator_code:org_t)
2008
2008
Engelska.
Ingår i: Journal of Fluid Mechanics. - 0022-1120 .- 1469-7645. ; 612, s. 261-289
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where K-B(x) is the breakup rate function and x is the aggregate mass. To model K-B(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for K-B(x) that is zero below a limiting aggregate mass, and diverges for x -> infinity. When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Kemiska processer (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Chemical Process Engineering (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Bäbler, Matthäus
Morbidelli, M.
Baldyga, Jerzy
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Kemiteknik
och Kemiska processe ...
Artiklar i publikationen
Journal of Fluid ...
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy