SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-163361"
 

Search: onr:"swepub:oai:DiVA.org:uu-163361" > Design and Synthesi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Design and Synthesis of Acyclic and Macrocyclic Peptidomimetics as Inhibitors of the Hepatitis C Virus NS3 Protease

Lampa, Anna (author)
Uppsala universitet,Avdelningen för organisk farmaceutisk kemi
Sandström, Anja (thesis advisor)
Uppsala universitet,Avdelningen för organisk farmaceutisk kemi
Tsantrizos, Youla, Prof. (opponent)
Mc Gill University, Department of Chemistry
 (creator_code:org_t)
ISBN 9789155482435
Uppsala : Acta Universitatis Upsaliensis, 2012
English 98 s.
Series: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 152
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Hepatitis C is a blood-borne disease affecting 130-170 million people worldwide. The causative agent, hepatitis C virus (HCV), infects the liver and is the major reason for chronic liver disease worldwide. The HCV NS3 protease, a key enzyme in the virus replication cycle, has been confirmed to be an important target for drug development. With the recent release of two HCV NS3 protease inhibitors onto the market and an arsenal of inhibitors in clinical trials, there are now hopes of finally combating the disease. However, the success of treatment relies heavily on the ability to overcome the emergence of drug-resistant forms of the protease. The main focus of this thesis was on designing and synthesizing novel inhibitors of the NS3 protease with a unique resistance profile. Efforts were also made to decrease the peptide character of the compounds, with the long-term goal of making them into more drug-like compounds. Special attention was devoted to developing inhibitors based on a phenylglycine in the P2 position, instead of the highly optimized and commonly used P2 proline. Around ninety acyclic and macrocyclic inhibitors have been synthesized and biochemically evaluated. P2 pyrimidinyloxy phenylglycine was successfully combined with an aromatic P1 moiety and alkenylic P1´ elongations, yielding a distinct class of HCV NS3 protease inhibitors. Macrocyclization was performed in several directions of the inhibitors via ring-closing metathesis. Only the macrocyclization between the P3-P1´ residues was successful in terms of inhibitory potency, which suggests that the elongated P1-P1´ residue is oriented towards the P3 side chain. The metathesis reaction was found to be significantly more dependent on the substrate than on the reaction conditions. It was also found that the P3 truncated inhibitors were able to retain good inhibitory potency, which initiated the synthesis and evaluation of a series of P2-P1´ inhibitors. The potential of the P3-P1´cyclized inhibitor and the smaller, acyclic P2-P1´ as new potential drug leads remains to be determined through pharmacokinetic profiling. Gratifyingly, all the inhibitors evaluated on A156T and D168V substituted enzyme variants were able to retain inhibitory potency towards these as compared to wild-type inhibition.

Subject headings

NATURVETENSKAP  -- Kemi -- Organisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Organic Chemistry (hsv//eng)

Keyword

hepatitis C virus
HCV
NS3 protease inhibitor
structure-activity relationship
phenylglycine
ring-closing metathesis
Medicinal Chemistry
Läkemedelskemi

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Lampa, Anna
Sandström, Anja
Tsantrizos, Youl ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Organic Chemistr ...
Parts in the series
Digital Comprehe ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view