SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-465079"
 

Search: onr:"swepub:oai:DiVA.org:uu-465079" > Direct Plasmonic So...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Direct Plasmonic Solar Cell Efficiency Dependence on Spiro-OMeTAD Li-TFSI Content

Geng, Xinjian (author)
Uppsala universitet,Fysikalisk kemi
Abdellah, Mohamed (author)
Peafowl Solar Power AB, R&D Div, S-75643 Uppsala, Sweden.;South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
Vadell, Robert Bericat (author)
Uppsala universitet,Fysikalisk kemi
show more...
Folkenant, Matilda (author)
Peafowl Solar Power AB, R&D Div, S-75643 Uppsala, Sweden.;Altris AB, Kungsgatan 70b, S-75318 Uppsala, Sweden.
Edvinsson, Tomas, Professor, 1970- (author)
Uppsala universitet,Fasta tillståndets fysik
Sá, Jacinto (author)
Uppsala universitet,Fysikalisk kemi,Peafowl Solar Power AB, R&D Div, S-75643 Uppsala, Sweden.;Polish Acad Sci IChF PAN, Inst Phys Chem, PL-01224 Warsaw, Poland.
show less...
 (creator_code:org_t)
2021-12-08
2021
English.
In: Nanomaterials. - : MDPI. - 2079-4991. ; 11:12
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The proliferation of the internet of things (IoT) and other low-power devices demands the development of energy harvesting solutions to alleviate IoT hardware dependence on single-use batteries, making their deployment more sustainable. The propagation of energy harvesting solutions is strongly associated with technical performance, cost and aesthetics, with the latter often being the driver of adoption. The general abundance of light in the vicinity of IoT devices under their main operation window enables the use of indoor and outdoor photovoltaics as energy harvesters. From those, highly transparent solar cells allow an increased possibility to place a sustainable power source close to the sensors without significant visual appearance. Herein, we report the effect of hole transport layer Li-TFSI dopant content on semi-transparent, direct plasmonic solar cells (DPSC) with a transparency of more than 80% in the 450-800 nm region. The findings revealed that the amount of oxidized spiro-OMeTAD (spiro(+)TFSI(-)) significantly modulates the transparency, effective conductance and conditions of device performance, with an optimal performance reached at around 33% relative concentration of Li-TFSI concerning spiro-OMeTAD. The Li-TFSI content did not affect the immediate charge extraction, as revealed by an analysis of electron-phonon lifetime. Hot electrons and holes were injected into the respective layers within 150 fs, suggesting simultaneous injection, as supported by the absence of hysteresis in the I-V curves. The spiro-OMeTAD layer reduces the Au nanoparticles' reflection/backscattering, which improves the overall cell transparency. The results show that the system can be made highly transparent by precise tuning of the doping level of the spiro-OMeTAD layer with retained plasmonics, large optical cross-sections and the ultrathin nature of the devices.

Subject headings

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Keyword

direct plasmonic solar cell
hole transporting material conductivity
ultrafast transient spectroscopy

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view